The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
To cite the R package SOMbrero in publications use:
Olteanu M, Villa-Vialaneix N (2015). “On-line relational and multiple relational SOM.” Neurocomputing, 147, 15–30. doi:10.1016/j.neucom.2013.11.047.
Villa-Vialaneix N (2017). “Stochastic self-organizing map variants with the R package SOMbrero.” In JC L, M C, M O (eds.), Proceedings of the 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM 2017), 1–7.
Olteanu M, Villa-Vialaneix N, Cottrell M (2012). “On-line relational SOM for dissimilarity data.” In Estevez, P., Principe, J., Zegers, P., G. B (eds.), Advances in Self-Organizing Maps (Proceedings of WSOM 2012, Santiago, Chili, 12-14 decembre 2012), volume 198 series Advances in Intelligent Systems and Computing series, 13–22.
Olteanu M, Villa-Vialaneix N (2015b). “Using SOMbrero for clustering and visualizing graphs.” Journal de la Societe Francaise de Statistique, 156, 95–119.
Mariette J, Rossi F, Olteanu M, Villa-Vialaneix N (2017). “Accelerating stochastic kernel SOM.” In M. V (ed.), Proceedings of XXVth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2017), 269–274.
Vialaneix N, Maigne E, Mariette J, Olteanu M, Rossi F, Bendhaiba L, Boelaert J (2024). SOMbrero: SOM Bound to Realize Euclidean and Relational Outputs. R package version 1.4-2 — For new features, see the 'NEWS', https://CRAN.R-project.org/package=SOMbrero.
Corresponding BibTeX entries:
@Article{, title = {On-line relational and multiple relational SOM}, author = {Madalina Olteanu and Nathalie Villa-Vialaneix}, journal = {Neurocomputing}, year = {2015}, volume = {147}, pages = {15--30}, doi = {10.1016/j.neucom.2013.11.047}, }
@InProceedings{, title = {Stochastic self-organizing map variants with the R package SOMbrero}, author = {Nathalie Villa-Vialaneix}, year = {2017}, booktitle = {Proceedings of the 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM 2017)}, publisher = {IEEE, Nancy, France}, pages = {1--7}, editor = {Lamirel JC and Cottrell M and Olteanu M}, }
@InProceedings{, title = {On-line relational SOM for dissimilarity data}, author = {Madalina Olteanu and Nathalie Villa-Vialaneix and Marie Cottrell}, booktitle = {Advances in Self-Organizing Maps (Proceedings of WSOM 2012, Santiago, Chili, 12-14 decembre 2012)}, address = {Berlin/Heidelberg}, publisher = {Springer Verlag}, year = {2012}, volume = {198}, pages = {13--22}, editor = {{Estevez} and {P.} and {Principe} and {J.} and {Zegers} and {P.} and Barreto G.}, series = {Advances in Intelligent Systems and Computing series}, }
@Article{, title = {Using SOMbrero for clustering and visualizing graphs}, author = {Madalina Olteanu and Nathalie Villa-Vialaneix}, journal = {Journal de la Societe Francaise de Statistique}, year = {2015b}, volume = {156}, pages = {95--119}, }
@InProceedings{, title = {Accelerating stochastic kernel SOM}, author = {Jerome Mariette and Fabrice Rossi and Madalina Olteanu and Nathalie Villa-Vialaneix}, year = {2017}, booktitle = {Proceedings of XXVth European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2017)}, publisher = {i6doc}, pages = {269--274}, editor = {Verleysen M.}, }
@Manual{, title = {SOMbrero: SOM Bound to Realize Euclidean and Relational Outputs}, author = {Nathalie Vialaneix and Elise Maigne and Jerome Mariette and Madalina Olteanu and Fabrice Rossi and Laura Bendhaiba and Julien Boelaert}, year = {2024}, url = {https://CRAN.R-project.org/package=SOMbrero}, note = {R package version 1.4-2 --- For new features, see the 'NEWS'}, }
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.