
Package ‘SepTest’
February 3, 2026

Title Tests for First-Order Separability in Spatio-Temporal Point
Processes

Version 0.0.1

Date 2026-01-18

Maintainer Mohammad Ghorbani <mohammad.ghorbani@slu.se>

Author Mohammad Ghorbani [aut, cre],
Nafiseh Vafaei [aut]

Description Provides statistical tools for testing first-order separability in spatio-temporal point pro-
cesses, that is, assessing whether the spatio-temporal intensity function can be ex-
pressed as the product of spatial and temporal components. The package implements several hy-
pothesis tests, including exact and asymptotic methods for Poisson and non-Poisson pro-
cesses. Methods include global envelope tests, chi-squared type statistics, and a novel
Hilbert-Schmidt independence criterion (HSIC) test, all with both block and pure permuta-
tion procedures. Simulation studies and real world examples, includ-
ing the 2001 UK foot and mouth disease outbreak data, illustrate the utility of the pro-
posed methods. The package contains all simulation studies and applications presented in Ghor-
bani et al. (2021) <doi:10.1016/j.csda.2021.107245> and Ghor-
bani et al. (2025) <doi:10.1007/s11749-025-00972-y>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.3

Imports combinat, dHSIC, fields, GET, ggplot2, graphics, MASS,
patchwork, reshape2, scatterplot3d, spatstat.explore,
spatstat.geom, spatstat.model, splancs, stats

Suggests testthat (>= 3.0.0), rmarkdown, pkgdown, knitr, spatstat,
stpp, RColorBrewer, plot3D

BugReports https://github.com/mghorbani01/SepTest/issues

URL https://github.com/mghorbani01/SepTest

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2026-02-03 13:30:14 UTC

1

https://doi.org/10.1016/j.csda.2021.107245
https://doi.org/10.1007/s11749-025-00972-y
https://github.com/mghorbani01/SepTest/issues
https://github.com/mghorbani01/SepTest

2 block.permut

Contents

block.permut . 2
calc.bandwidths.and.edgecorr . 4
check.args . 6
chi2.test . 7
chisq.test.stPP . 9
dHS.test . 10
estimate.intensity.pixel . 12
estimate.intensity.point . 14
estimate.st.intensity . 15
Gauss.st.F . 17
get.lambda.function . 19
get.lambda.max . 21
global.envelope.test . 23
norm2d . 25
norm3d . 26
plot_procedures . 28
plot_stDPP . 29
plot_stlgcp . 30
plot_stpp . 32
random.shift . 34
rstDPP . 35
rstLGCPP . 38
rstpoispp . 39
run_fmd_example . 41
S.based.functions . 42
sim.procedures . 44

Index 46

block.permut Block permutation of the temporal component in a spatio-temporal
point pattern

Description

Permutes the temporal component of a spatio-temporal dataset in a block-wise manner while keep-
ing the spatial coordinates fixed. This is used to generate permuted replicates under the null model
of first-order separability.

Usage

block.permut(nblocks, X, nperm = 1999)

block.permut 3

Arguments

nblocks Integer (>= 2). Number of consecutive temporal blocks after ordering events by
time.

X Numeric matrix or data frame with at least three columns (x, y, t). Each row
represents one event. The third column is interpreted as the time coordinate.

nperm Integer (>= 1). Number of permuted datasets to generate. At most factorial(nblocks)
- 1 distinct non-identity block permutations exist.

Details

The function first orders the events by time and partitions the ordered sequence into nblocks con-
secutive blocks of equal size. The block labels are permuted (excluding the identity permutation),
and the time values are reassigned according to the permuted block order.

If nrow(X) is not divisible by nblocks, the last nrow(X) %% nblocks events are not included in the
block permutation and are appended unchanged to each permuted dataset.

For details of the block permutation procedure, see the Supplementary Materials in Ghorbani et al.
(2025).

Note that the sim.procedures covers both pure and block permutation methods.

Value

A list of length min(nperm, factorial(nblocks) - 1). Each element is a matrix with the same
number of columns as X; the third column contains the block-permuted time values.

References

Ghorbani, M., Vafaei, N. and Myllymäki, M. (2025). A kernel-based test for the first-order separa-
bility of spatio-temporal point processes, TEST.

See Also

sim.procedures

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), runif(100, 0, 10))
perms <- block.permut(nblocks = 5, X = X, nperm = 10)
head(perms[[1]], 5)

4 calc.bandwidths.and.edgecorr

calc.bandwidths.and.edgecorr

Compute bandwidths and edge-correction factors for spatio-temporal
kernel intensity estimation

Description

Computes spatial and temporal bandwidths for kernel-based estimation of the intensity of a spatio-
temporal point pattern. The spatial bandwidth is estimated from the spatial coordinates using Dig-
gle’s (1985) mean-square error method via bw.diggle. The temporal bandwidth is estimated from
the time coordinates using the Sheather–Jones direct plug-in method (bw = "SJ-dpi") as imple-
mented in density.

Usage

calc.bandwidths.and.edgecorr(
X,
s.region,
t.region,
n.grid,
epsilon = NULL,
delta = NULL

)

Arguments

X A numeric matrix or data frame with at least three columns giving the x-, y-, and
time coordinates t of observed spatio-temporal events. Each row corresponds to
one event.

s.region A numeric matrix with two columns giving the vertices of the polygonal spatial
observation window in order (the first vertex need not be repeated at the end).

t.region A numeric vector of length 2 giving the temporal observation window c(tmin,
tmax) with tmin < tmax.

n.grid An integer vector of length 3 giving the number of grid cells in the x, y, and time
dimensions. Only n.grid[3] is used when estimating the temporal bandwidth.

epsilon Optional positive numeric. Spatial bandwidth. If NULL, estimated using bw.diggle.

delta Optional positive numeric. Temporal bandwidth. If NULL, estimated using density(...,
bw = "SJ-dpi").

Details

Edge-correction factors are computed for Gaussian kernels as the kernel mass inside the observation
window: c(x) =

∫
W

Kh(u − x) du. The temporal correction is computed exactly over t.region.
The spatial correction is computed using the Diggle edge-correction method as implemented in
spatstat.explore, which accounts for the polygonal spatial observation window.

calc.bandwidths.and.edgecorr 5

The spatial window is converted to an owin object, and the spatial bandwidth is estimated using
Diggle’s mean-square error method via bw.diggle applied to the corresponding ppp object. Spatial
edge-correction factors are computed using the Diggle edge-correction method implemented in
spatstat.explore.

The temporal bandwidth is selected using the Sheather–Jones direct plug-in method (bw = "SJ-dpi")
as implemented in density over t.region.

The returned edge-correction factors are kernel masses inside the window. If you use them for
intensity estimation with edge correction, typical usage is to divide by these factors.

Value

A list with components:

bw Numeric vector of length 3: c(epsilon, epsilon, delta).

time Numeric vector of length nrow(X) giving temporal edge masses
∫ tmax

tmin
Kδ(u− ti) du.

space Numeric vector of length nrow(X) giving spatial edge-correction factors computed using the
Diggle method for the polygonal window s.region.

References

Baddeley A, Rubak E, Turner R (2015). Spatial Point Patterns: Methodology and Applications with
R. Chapman and Hall/CRC Press.

Diggle, P.J. (1985). A Kernel Method for Smoothing Point Process Data. Journal of the Royal
Statistical Society, Series C, 34, 138–147.

See Also

bw.diggle, density

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), runif(100, 0, 10))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol = 2, byrow = TRUE)
t.region <- c(0, 10)
n.grid <- c(25, 25, 20)
res <- calc.bandwidths.and.edgecorr(X, s.region, t.region, n.grid)
str(res)

6 check.args

check.args Validate common arguments for spatio-temporal grid-based routines

Description

Checks the validity of common inputs used by spatio-temporal estimation and simulation routines:
event locations X, spatial window specification s.region, temporal window t.region, and grid
resolution n.grid.

Usage

check.args(X, s.region, t.region, n.grid = c(25L, 25L, 20L))

Arguments

X A matrix or data frame with at least three columns giving event coordinates
(x, y, t). Only the first three columns are used for validation.

s.region Spatial observation region specification. Either:

• a numeric vector of length 4 giving c(xmin, xmax, ymin, ymax), or
• a numeric matrix with two columns giving polygon vertices (x, y) (at least

3 rows).

All values must be finite.

t.region Numeric vector of length 2 giving c(tmin, tmax) with tmin < tmax. Values
must be finite.

n.grid Integer vector of length 3 giving the number of grid cells in the x, y, and time
directions. Must be positive.

Details

This function is intended as a lightweight argument checker used internally by multiple functions.
It can also be called directly for debugging input issues.

Value

Invisibly returns NULL. Called for its side effect of throwing an error if inputs are invalid.

Examples

X <- cbind(runif(100), runif(100), runif(100, 0, 10))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol = 2, byrow = TRUE)
t.region <- c(0, 10)
check.args(X, s.region, t.region, n.grid = c(25, 25, 20))

chi2.test 7

chi2.test Chi-squared test for first-order separability of a spatio-temporal point
process

Description

Performs a chi-squared test for testing first-order separability of a spatio-temporal point process.
Two procedures are available:

"pure_per" Classical asymptotic chi-squared test of independence on a space–time count table.

"block_per" Monte Carlo permutation test based on block-wise permutations of the time compo-
nent.

Usage

chi2.test(
X,
sim.procedure = c("pure_per", "block_per"),
nblocks = 5L,
nperm = 199L,
n.time = 2L,
n.space = 3L,
t.region = c(0, 1),
s.region = c(0, 1, 0, 1)

)

Arguments

X A numeric matrix or data frame with at least three columns giving event coordi-
nates (x, y, t).

sim.procedure Character string specifying the procedure: "pure_per" or "block_per".

nblocks Integer (>= 2). Number of temporal blocks used for block permutation (only for
"block_per").

nperm Integer (>= 1). Number of Monte Carlo permutations (only for "block_per").

n.time Integer (>= 2). Number of temporal intervals in the contingency table.

n.space Integer (>= 2). The spatial domain is partitioned into n.space bins per axis
(yielding n.space^2 spatial cells) for the contingency table.

t.region Numeric vector of length 2 giving the temporal window c(tmin, tmax) with
tmin < tmax.

s.region Spatial window specification. By default, the bounding box c(0, 1, 0, 1) cor-
responding to c(xmin, xmax, ymin, ymax). Passed to chisq.test.stPP.

8 chi2.test

Details

The classical procedure ("pure_per") applies a chi-squared test of independence to the n.space^2
by n.time contingency table of counts.

The permutation procedure ("block_per") generates up to nperm block-permuted datasets under
the null using sim.procedures with method = "block", recomputes the chi-squared statistic for
each, and returns a Monte Carlo p-value computed as (1 + #{Ti ≥ Tobs})/(nperm+ 1).

Value

Numeric scalar: the p-value of the test.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability
hypothesis for spatio-temporal point patterns. Computational Statistics and Data Analysis, 161,
107245.

Ghorbani, M., Vafaei, N. and Myllymäki, M. (2025). A kernel-based test for the first-order separa-
bility of spatio-temporal point processes, TEST.

See Also

chisq.test.stPP, sim.procedures, block.permut

Examples

set.seed(124)
lambda <- get.lambda.function(N = 200, g = 50, model = 4)
Lmax <- get.lambda.max(N = 200, g = 50, model = 4)
X <- rstpoispp(lambda, Lmax)

Classical chi-squared test
chi2.test(X, sim.procedure = "pure_per", n.time = 2, n.space = 3)

Monte Carlo permutation test with blocks
chi2.test(X, sim.procedure = "block_per", nblocks = 5, nperm = 100)

chisq.test.stPP 9

chisq.test.stPP Chi-squared test for first-order separability of a spatio-temporal point
process

Description

Performs the classical (asymptotic) chi-squared test of first-order separability by constructing a
space-time contingency table of counts and applying a chi-squared test of independence.

Usage

chisq.test.stPP(
X,
n.space = 2L,
n.time = 3L,
s.region = c(0, 1, 0, 1),
t.region = c(0, 1)

)

Arguments

X A numeric matrix or data frame with at least three columns giving event coordi-
nates (x, y, t).

n.space Integer (>= 2). Number of bins per spatial axis. The contingency table has
n.space^2 rows.

n.time Integer (>= 2). Number of temporal bins (columns of the contingency table).

s.region Numeric vector of length 4 giving the spatial bounding box c(xmin, xmax,
ymin, ymax). Defaults to the unit box c(0,1,0,1).

t.region Numeric vector of length 2 giving the temporal window c(tmin, tmax) with
tmin < tmax. Defaults to c(0,1).

Details

The spatial domain is partitioned into n.space bins in each coordinate direction (yielding n.space^2
spatial cells), and the temporal domain is partitioned into n.time intervals. Bin boundaries are de-
fined using empirical quantiles of the observed coordinates, with the first/last boundaries fixed to
the provided spatial and temporal windows.

Events falling outside s.region or t.region are ignored (with a warning). If the data contain
many ties, quantile-based boundaries may coincide; in that case reduce n.space/n.time or jitter
the coordinates slightly.

This implementation uses chisq.test on the contingency table of space–time counts. If expected
counts are very small, the chi-squared approximation may be poor; in that case consider using a
Monte Carlo approach (e.g., block permutation) as implemented in chi2.test.

10 dHS.test

Value

A list with components:

chisq_s Numeric scalar. The chi-squared test statistic.

chisq_p Numeric scalar. The p-value of the chi-squared test.

counts Integer matrix of dimension n.space^2 by n.time containing the space–time counts.

Author(s)

Jiří Dvořák <dvorak@karlin.mff.cuni.cz>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability
hypothesis for spatio-temporal point patterns. Computational Statistics and Data Analysis, 161,
107245.

See Also

chi2.test, chisq.test

Examples

lambda <- get.lambda.function(N = 200, g = 50, model = 4)
Lmax <- get.lambda.max(N = 200, g = 50, model = 4)
X <- rstpoispp(lambda, Lmax)
result <- chisq.test.stPP(X, n.space = 2, n.time = 2)
print(result)

dHS.test dHSIC test for first-order separability of a spatio-temporal point pro-
cess

Description

Performs a nonparametric test of first-order separability between space and time in a spatio-temporal
point process using the d-variable Hilbert–Schmidt independence criterion (dHSIC). The test statis-
tic evaluates whether the spatio-temporal intensity ρ(u, t) can be written in the multiplicative form
ρ1(u)ρ2(t), (u, t) ∈ R2 × R, where ρ1 and ρ2 are nonnegative measurable functions.

dHS.test 11

Usage

dHS.test(
X,
sim.procedure = c("pure_per", "block_per"),
nblocks = 7L,
nperm = 1999L,
nsim = 199L,
bandwidth = NULL

)

Arguments

X A numeric matrix or data frame with at least three columns giving event coordi-
nates (x, y, t).

sim.procedure Character string specifying the permutation strategy: "pure_per" or "block_per".

nblocks Integer (>= 2). Number of temporal blocks for block permutation (only for
"block_per").

nperm Integer (>= 1). Number of block permutations (only for "block_per").

nsim Integer (>= 1). Number of pure permutations (only for "pure_per").

bandwidth Optional numeric. Fixed bandwidth to use with kernel = "gaussian.fixed"
in dHSIC::dhsic. If a single value is provided, it is used for both the spa-
tial and temporal variables. If a vector of length 2 is provided, it is inter-
preted as c(bw_space, bw_time). If provided, the function also returns a fixed-
bandwidth Monte Carlo p-value. If NULL, only the adaptive-bandwidth Gaussian
kernel (kernel = "gaussian") is used.

Details

Two permutation strategies are supported:

"pure_per" Randomly permutes the time component across events.

"block_per" Uses block-wise permutation of the time component via sim.procedures with method
= "block" to preserve short-range temporal dependence.

The Monte Carlo p-value is computed with the standard +1 correction: (1+#{Ti ≥ Tobs})/(B+1),
where B is the number of permutations.

Value

A list with components:

p.value Monte Carlo p-value based on the adaptive-bandwidth Gaussian kernel.

p.value.bw Monte Carlo p-value based on the fixed-bandwidth Gaussian kernel, or NA if bandwidth
= NULL.

bandwidth_data Bandwidth selected by dHSIC::dhsic(..., kernel = "gaussian").

12 estimate.intensity.pixel

Note

The dHSIC method is implemented via the dHSIC package. When sim.procedure = "pure_per",
dHS.test() internally calls dhsic from R package dHSIC for computational efficiency.

References

Ghorbani, M., Vafaei, N. and Myllymäki, M. (2025). A kernel-based test for the first-order separa-
bility of spatio-temporal point processes, TEST.

See Also

sim.procedures, block.permut, chi2.test

Examples

if (requireNamespace("dHSIC", quietly = TRUE)) {
set.seed(123)
X <- cbind(runif(100), runif(100), runif(100, 0, 10))

Pure permutation test
result <- dHS.test(sim.procedure = "pure_per",

X = X, nsim = 199, bandwidth = 0.05)
print(result$p.value)

Block permutation test
result_block <- dHS.test(sim.procedure = "block_per", X = X,

nblocks = 5, nperm = 100, bandwidth = 0.05)
print(result_block$p.value.bw)

}

estimate.intensity.pixel

Kernel-based intensity estimation on a space-time grid and its compo-
nents, and test statistics for first-order separability

Description

Computes kernel-smoothed estimates of spatial, temporal, separable, and non-separable spatio-
temporal intensity functions on a regular space-time grid, together with separability diagnostics
used in first-order separability analysis.

Usage

estimate.intensity.pixel(X, s.region, t.region, n.grid, edge, owin = NULL)

estimate.intensity.pixel 13

Arguments

X Numeric matrix/data.frame with three columns (x, y, t) giving observed events.

s.region Numeric matrix with two columns defining the spatial window (typically poly-
gon vertices). Grid limits are taken as range(s.region[,1]) and range(s.region[,2]).

t.region Numeric vector of length 2 giving the temporal window c(tmin, tmax).

n.grid Integer vector of length 3 giving grid resolution in x, y, and t.

edge List with components bw (length 3), space (length nrow(X)), and time (length
nrow(X)).

owin Optional observation window of class "owin" (from spatstat.geom). If pro-
vided, intensity estimates outside the window are set to NA.

Details

The estimator uses product Gaussian kernels with supplied bandwidths and (Gaussian) edge-correction
factors, typically produced by calc.bandwidths.and.edgecorr.

Value

A list with grid coordinates x,y,t, intensity estimates, the diagnostic S.fun, its marginal summaries
S.space and S.time, and deviation measures.

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

See Also

S.based.functions, calc.bandwidths.and.edgecorr

Examples

n <- 100
X <- cbind(x = stats::runif(n), y = stats::runif(n), t = stats::runif(n, 0, 10))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol=2, byrow=TRUE)
t.region <- c(0, 10)
n.grid <- c(10, 10, 5)
edge <- list(bw = c(0.05, 0.05, 0.5), space = rep(1, n), time = rep(1, n))
res <- estimate.intensity.pixel(X, s.region, t.region, n.grid, edge)
str(res)

14 estimate.intensity.point

estimate.intensity.point

Kernel intensity estimates of a spatio-temporal point process at ob-
served points and its components, and test statistics for first-order sep-
arability

Description

Computes kernel-based spatial, temporal, separable, and non-separable intensity estimates evalu-
ated at the observed spatio-temporal event locations. The function also returns the separability
diagnostic Si and global deviation measures quantifying departures from first-order separability.

Usage

estimate.intensity.point(X, n.grid, edge)

Arguments

X Numeric matrix/data.frame with three columns (x,y,t) giving event coordi-
nates.

n.grid Integer. Included for API compatibility with grid-based routines; not used.

edge List with components bw (length 3), space, and time. space and time are
Gaussian edge-correction masses evaluated at each event; each may be a scalar
or a numeric vector of length nrow(X).

Details

Pairwise Gaussian kernel weights are computed in each dimension and diagonal entries are set to
zero to remove self-contributions.

Value

A list with components S.fun, deviation measures, and estimated intensity components at the ob-
served points.

See Also

dnorm

Examples

X <- cbind(stats::runif(50), stats::runif(50), stats::runif(50))
edge <- list(bw = c(0.1, 0.1, 0.1), space = 1, time = 1)
res <- estimate.intensity.point(X, n.grid = 50, edge = edge)
str(res)

estimate.st.intensity 15

estimate.st.intensity Kernel Estimation of the Spatio-Temporal Intensity Function and Its
Components, and Test Statistics for First-Order Separability

Description

It returns estimates of the full spatio-temporal intensity together with its spatial and temporal
marginal components. The output also includes the test statistic S(u, t) and its spatial and tem-
poral marginal profiles Sspace(u) and Stime(t) (equations (11)–(13) in Ghorbani et al., 2021), as
well as several deviation tests (e.g., equation (15) in Ghorbani et al., 2021) that quantify departures
from first-order separability.

Usage

estimate.st.intensity(
X,
s.region,
t.region,
at = c("pixels", "points"),
n.grid = c(25, 25, 20)

)

Arguments

X A numeric matrix with three columns giving the event coordinates (x, y, and t).

s.region A numeric matrix with two columns defining the polygonal boundary of the
spatial observation region.

t.region A numeric vector of length 2 specifying the temporal observation window.

at Character string; either "pixels" to estimate intensity on a spatio-temporal grid
or "points" to compute the estimates at observed event locations.

n.grid A numeric vector of length 3 giving the number of grid cells in the x, y, and t
dimensions. Required when at = "pixels".

Details

The estimation follows the kernel framework of Ghorbani et al. (2021). A Gaussian kernel is applied
in each spatial and temporal dimension. Spatial bandwidths are estimated using Diggle’s method,
and the temporal bandwidth is obtained by the Sheather–Jones direct plug-in (SJ-DPI) approach (see
calc.bandwidths.and.edgecorr for implementation details). Edge corrections and bandwidths
are computed using the calc.bandwidths.and.edgecorr.

The non-separable intensity estimate is

ρ̂(u, t) =

n∑
i=1

K2
ϵ (u− ui)

CW,ϵ(ui)

K1
δ (t− ti)

CT,δ(ti)
,

16 estimate.st.intensity

where kb(v) = k(v/b)/bd is a d-dimensional kernel with bandwidth b > 0, and K1 and K2 are
Gaussian kernels with spatial and temporal bandwidths ϵ and δ. CW,ϵ(ui) and CT,δ(ti) are spatial
and temporal edge corrections, respectively. For estimate of the separable counterparts and more
details see equations (3)-(5) in Ghorbani et al., 2021).

The separability test is:

S(u, t) =
ρ̂(u, t)

ρ̂space(u)ρ̂time(t)/n
,

where n is the number of observed points.

Several deviation statistics are provided to quantify departures from separability

• deviation.t1: Integral of absolute deviations
∫
W×T

|ρ̂(u, t)− ρ̂sep(u, t)|dudt.
• deviation.t2: Integral of absolute deviation of inverse intensities

∫
W×T

|1/ρ̂(u, t)−1/ρ̂sep(u, t)|dudt.

• deviation.t3: Sum of log-ratio deviations
∑

i

(
log(ρ̂(ui, ti)− log(ρ̂sep(ui, ti))

)
.

• deviation.t4: Integral of the S-function.

When at = "points", intensities and diagnostics are evaluated at the observed event locations.

Value

A list containing:

x, y, t Grid vectors for x, y, and t (returned only when at = "pixels").

epsilon Estimated spatial bandwidth used in Gaussian kernels.

delta Estimated temporal bandwidth.

SPat.intens Estimated spatial intensity surface (pixels only).

TeM.intens Estimated temporal intensity profile (pixels only).

sep.intens Separable spatio-temporal intensity estimate.

nonsep.intens Non-separable spatio-temporal intensity estimate.

S.fun Test function S(u, t) as the ratio of non-separable to separable intensity estimates.

S.space Marginal sum of S(u, t) over time (space profile).

S.time Marginal sum of S(u, t) over space (time profile).

deviation.t1 Deviation statistic: Integral of absolute deviations.

deviation.t2 Deviation statistic: absolute deviation of inverse intensities.

deviation.t3 Deviation statistic: sum of log-ratio deviations.

deviation.t4 Total integral of the S-function.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@ltu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability hy-
pothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.

Gauss.st.F 17

See Also

calc.bandwidths.and.edgecorr, global.envelope.test, chi2.test, dHS.test

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), runif(100, 0, 10))
s.region <- matrix(c(0, 0, 1, 0, 1, 1, 0, 1), ncol = 2, byrow = TRUE)
t.region <- c(0, 10)
result <- estimate.st.intensity(X, s.region, t.region, at = "pixels", n.grid = c(64, 64, 32))
str(result$S.fun)
image(result$S.fun[,,5], main = "S-function slice at t[5]",

col = topo.colors(50))
contour(result$S.fun[,,5], add=TRUE)
str(result[c("deviation.t1","deviation.t3","deviation.t4")])

Gauss.st.F Simulate a spatio-temporal Gaussian random field on a regular grid

Description

Simulates a space-time Gaussian random field on a regular (x, y, t) grid. The field is returned as a
3D array and can be used as a latent field for log-Gaussian Cox process (LGCP) simulation.

Usage

Gauss.st.F(
xlim = c(0, 1),
ylim = c(0, 1),
tlim = c(0, 1),
par1 = c(1, 0.05),
par2 = c(1, 0.06),
sigmas = c(0.5, 0.5, 1),
grid = c(15L, 15L, 10L)

)

Arguments

xlim, ylim, tlim Numeric vectors of length 2 giving the ranges for the spatial and temporal axes.
Defaults are c(0,1) for each.

par1 Numeric vector of length 2 giving the temporal covariance parameters c(variance,
scale) for an exponential covariance var ∗ exp(−d/scale).

par2 Numeric vector of length 2 giving the spatial covariance parameters c(variance,
scale) for an exponential covariance var ∗ exp(−d/scale).

18 Gauss.st.F

sigmas Numeric vector of length 3 specifying the weights (σ1, σ2, σ3) for combining
the spatial, temporal, and spatio-temporal components of the field.

grid Integer vector of length 3 giving the number of grid points in the x, y, and t
directions.

Details

The simulated field is a weighted sum of three independent Gaussian components:

Z(x, y, t) = σ1Zs(x, y) + σ2Zt(t) + σ3Zst(x, y, t),

where Zs is a purely spatial field, Zt is a purely temporal field, and Zst is a spatio-temporal field
with separable exponential covariance in space and time.

The function uses mvrnorm for multivariate normal simulation and rdist to compute pairwise dis-
tances for covariance matrix construction.

Spatial and temporal covariances are exponential. The spatio-temporal component uses a separable
covariance Cst((u, t), (u

′, t′)) = Cs(u, u
′)Ct(t, t

′). Simulation is performed via Cholesky factors
without constructing the full (nx ∗ ny ∗ nt)× (nx ∗ ny ∗ nt) covariance matrix.

Value

A list with components:

Z Numeric array of dimension c(nx, ny, nt) containing simulated field values.

xcoord Numeric vector of length nx with x-grid coordinates.

ycoord Numeric vector of length ny with y-grid coordinates.

tcoord Numeric vector of length nt with time-grid coordinates.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability
hypothesis for spatio-temporal point patterns. Computational Statistics and Data Analysis, 161,
107245.

See Also

mvrnorm, rdist

get.lambda.function 19

Examples

if (requireNamespace("MASS", quietly = TRUE) && requireNamespace("fields", quietly = TRUE)) {
set.seed(1)
field <- Gauss.st.F(
xlim = c(0, 1), ylim = c(0, 1), tlim = c(0, 1),
par1 = c(1, 0.05), par2 = c(1, 0.06),
sigmas = c(0.5, 0.5, 1),
grid = c(15, 15, 10)

)
Inspect dimensions and visualize one time slice
dim(field$Z)
image(field$xcoord, field$ycoord, field$Z[, , 1],

main = "Gaussian Random Field (t = 1)",
col = RColorBrewer::brewer.pal(11, "Spectral"))

}

get.lambda.function Construct spatio-temporal intensity functions with controlled separa-
bility

Description

Returns an intensity function λ(x, y, t) corresponding to one of four models used for simulation
experiments in Ghorbani et al. (2021). Each model is a mixture of a separable "background" com-
ponent and a structured (generally non-separable) spatio-temporal Gaussian bump. The models
provide different degrees of space–time separability, allowing for controlled experiments on sepa-
rability testing.

Usage

get.lambda.function(
N,
g,
model = 1L,
mu1 = 0.5,
sd1 = 0.2,
mu2 = c(0.5, 0.5),
sd2 = c(0.2, 0.2),
mu3 = c(0.3, 0.3, 0.2),
sd3 = c(0.05, 0.05, 0.05)

)

Arguments

N Numeric scalar (> 0). Baseline intensity level (interpreted as an expected total
count after scaling in the calling simulator; see details below).

g Numeric scalar (>= 0). Weight of the structured (non-separable) component.

20 get.lambda.function

model Integer in 1:4 indicating the structure of the intensity function.

mu1 Numeric scalar. Mean of the temporal Gaussian background term (models 2 and
4).

sd1 Numeric scalar (> 0). Standard deviation of the temporal Gaussian background
term (models 2 and 4).

mu2 Numeric vector of length 2. Mean of the spatial 2D Gaussian background term
(models 3 and 4).

sd2 Numeric vector of length 2 with positive entries. Standard deviations of the
spatial 2D Gaussian background term (models 3 and 4).

mu3 Numeric vector of length 3. Mean of the structured (non-separable) 3D Gaussian
component.

sd3 Numeric vector of length 3 with positive entries. Standard deviations of the
structured 3D Gaussian component.

Details

The returned function is intended for use in simulation (e.g., for generating spatio-temporal Poisson
point patterns under varying degrees of separability).

The intensity is constructed as:

λ(x, y, t) = λbg(x, y, t) + g fst(x, y, t),

where fst is a nonnegative 3D Gaussian density (via norm3d) and the background term λbg depends
on model:

1 Homogeneous background: λbg(x, y, t) = (N − g)

2 Temporal inhomogeneity only: λbg(x, y, t) = (N − g) ft(t), where ft is a 1D Gaussian density
(dnorm).

3 Spatial inhomogeneity only: λbg(x, y, t) = (N − g) fs(x, y), where fs is a 2D Gaussian density
(norm2d).

4 Separable spatial-temporal inhomogeneity: λbg(x, y, t) = (N − g) fs(x, y) ft(t).

Note: since Gaussian densities can exceed 1 for small standard deviations, N is best interpreted as a
scaling parameter used by the calling simulator. Ensure λ(x, y, t) is nonnegative over the intended
domain.

See more details in Ghorbani et al. (2021), Section 6.1.

Value

A function of the form function(x, y, t) representing the selected intensity surface.

Note

This function is primarily intended for generating intensity functions used in simulation studies. In
particular, rstpoispp calls get.lambda.function() internally to construct intensity models for
simulating spatio-temporal Poisson point processes with controlled separability.

get.lambda.max 21

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

See Also

rstpoispp, norm3d, norm2d, chi2.test, dHS.test

Examples

Choose model 4: non-separable spatio-temporal intensity
lambda <- get.lambda.function(N = 210, g = 50, model = 4)
lambda(0.5, 0.5, 0.5) # Evaluate intensity at center of space-time domain

Visualize spatial intensity at fixed time for model 2
lambda2 <- get.lambda.function(N = 200, g = 50, model = 2)
x <- y <- seq(0, 1, length.out = 100)
z <- outer(x, y, function(x, y) lambda2(x, y, t = 0.5))

fields::image.plot(
x, y, z,
main = "Intensity at t = 0.5 (Model 2)",
col = topo.colors(50))

get.lambda.max Upper bound for spatio-temporal intensity models

Description

Computes a practical upper bound for the spatio-temporal intensity models used in get.lambda.function.
The bound is intended for thinning/rejection sampling in simulation routines such as rstpoispp.

Usage

get.lambda.max(
N,
g,
model = 1L,
mu1 = 0.5,
sd1 = 0.2,
mu2 = c(0.5, 0.5),

22 get.lambda.max

sd2 = c(0.2, 0.2),
mu3 = c(0.3, 0.3, 0.2),
sd3 = c(0.05, 0.05, 0.05)

)

Arguments

N Numeric scalar (> 0). Total expected number of events (baseline intensity level).

g Numeric scalar (>= 0). Weight of the structured (non-separable) component.

model Integer in 1:4. See get.lambda.function.

mu1 Numeric scalar. Mean of the temporal Gaussian background term (models 2 and
4).

sd1 Numeric scalar (> 0). Standard deviation of the temporal Gaussian background
term.

mu2 Numeric vector of length 2. Mean of the spatial Gaussian background term
(models 3 and 4).

sd2 Numeric vector of length 2 with positive entries. Standard deviations of the
spatial background term.

mu3 Numeric vector of length 3. Mean of the structured spatio-temporal Gaussian
component.

sd3 Numeric vector of length 3 with positive entries. Standard deviations of the
structured component.

Details

The bound is computed using analytic maxima of Gaussian density components (at their modes),
which yields a conservative and fast-to-evaluate upper bound when the component functions are
Gaussian product densities.

The intensity models are mixtures of a background term and a structured spatio-temporal Gaussian
bump. This function returns an upper bound obtained by evaluating each Gaussian density compo-
nent at its mode. This upper bound is typically sufficient for rejection sampling when generating
realizations of inhomogeneous Poisson or Cox point processes.

If norm2d and norm3d in this package are Gaussian product densities (independent components),
then the maxima are available in closed form:

• maxt ϕ(t;µ, σ) = 1/(σ
√
2π)

• maxx,y ϕ(x;µx, σx)ϕ(y;µy, σy) = 1/(2πσxσy)

• maxx,y,t
∏3

d=1 ϕ(·;µd, σd) = 1/((2π)3/2σxσyσt)

If your norm2d/norm3d use a different parameterization, this bound should be updated accordingly.

Value

Numeric scalar. A conservative upper bound for the selected intensity model.

global.envelope.test 23

Author(s)

Nafiseh Vafaei <nafiseh.vafaei@slu.se>
Mohammad Ghorbani <mohammad.ghorbani@slu.se>

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separability
hypothesis for spatio-temporal point patterns. Computational Statistics and Data Analysis, 161,
107245.

See Also

get.lambda.function, rstpoispp

Examples

Example 1: Homogeneous model (Model 1)
get.lambda.max(N = 200, g = 50, model = 1)

Example 2: Non-separable spatio-temporal model (Model 4)
get.lambda.max(N = 200, g = 50, model = 4)

global.envelope.test Global envelope test for spatio-temporal separability using S-function

Description

Performs a global envelope test of the null hypothesis of first-order separability for a spatio-temporal
point process. The observed separability diagnostics S(u, t), Sspace(u) and/or Stime(t) are com-
pared to a reference distribution obtained from permuted versions of the data.

Usage

global.envelope.test(
X,
sim.procedure = c("pure_per", "block_per"),
nsim = 25L,
nblocks = 5L,
nperm = 199L,
n.grid = c(20L, 20L, 10L),
s.region = matrix(c(0, 0, 1, 0, 1, 1, 0, 1), ncol = 2, byrow = TRUE),
t.region = c(0, 1),
owin = NULL,
eps = NULL,
del = NULL,
tests = c("S.test", "S.space.test", "S.time.test"),
GET.args = NULL

)

24 global.envelope.test

Arguments

X A numeric matrix or data frame with at least three columns giving (x, y, t).

sim.procedure Character string specifying the permutation strategy: "pure_per" or "block_per".

nsim Integer. Number of permutations for "pure_per".

nblocks Integer (>= 2). Number of temporal blocks for block permutation. Used only
for "block_per".

nperm Integer. Number of block permutations for "block_per".

n.grid Integer/numeric vector of length 3 specifying grid resolution in x, y, t.

s.region Numeric matrix with two columns specifying polygon vertices of the spatial
window.

t.region Numeric vector of length 2 specifying temporal window c(tmin,tmax).

owin Optional window of class "owin" (from spatstat.geom). If supplied, values
outside the window are set to NA (pixels mode).

eps Optional numeric scalar (>0). Spatial bandwidth. If NULL, estimated internally.

del Optional numeric scalar (>0). Temporal bandwidth. If NULL, estimated inter-
nally.

tests Character vector indicating which diagnostics to test. Any of "S.test", "S.space.test",
"S.time.test".

GET.args Optional named list of extra arguments passed to global_envelope_test (e.g.
alternative, savefuns, nstep).

Details

Two permutation strategies are supported:

"pure_per" Pure permutation: randomly permutes the time coordinates.

"block_per" Block permutation: permutes time in blocks to preserve short-range temporal depen-
dence.

The GET package is used to construct global envelopes and compute p-values.

The null hypothesis is
H0 : ρ(u, t) = ρspace(u)ρtime(t).

The function computes the chosen diagnostics using S.based.functions on a pixel grid (at="pixels")
and applies global_envelope_test.

To keep curve lengths identical (required by GET), any NA values induced by an owin mask are
removed using the same indices for the observed and all simulated curves.

Value

A list with components:

Bandwidth_s Spatial bandwidth used.

Bandwidth_t Temporal bandwidth used.

S.test, S.space.test, S.time.test For each requested test: p-values for ERL and AREA envelopes,
plus optional plots if created.

norm2d 25

Author(s)

Nafiseh Vafaei <nafiseh.vafaei@slu.se>
Mohammad Ghorbani <mohammad.ghorbani@slu.se>

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

See Also

S.based.functions, sim.procedures, block.permut, global_envelope_test, plot.global_envelope

Examples

if (requireNamespace("GET", quietly = TRUE)) {
set.seed(123)
X <- cbind(stats::runif(100), stats::runif(100), stats::runif(100, 0, 1))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol = 2, byrow = TRUE)
t.region <- c(0, 1)

res <- global.envelope.test(
X = X,
sim.procedure = "pure_per",
nsim = 19,
n.grid = c(10,10,10),
s.region = s.region,
t.region = t.region,
tests = c("S.test","S.time.test")

)
str(res)

}

norm2d Bivariate normal density with independent components

Description

Evaluates the density of a bivariate normal distribution with mean vector µ = (µx, µy) and diagonal
covariance matrix (independent components). The density is the product of the two univariate
normal densities:

f(x, y) = ϕ(x;µx, σx)ϕ(y;µy, σy).

Usage

norm2d(x, y, mu = c(0, 0), sd = c(1, 1), log = FALSE)

26 norm3d

Arguments

x Numeric vector of x-coordinate(s).

y Numeric vector of y-coordinate(s).

mu Numeric vector of length 2 giving c(mu_x, mu_y).

sd Numeric vector of length 2 giving positive standard deviations c(sd_x, sd_y).

log Logical; if TRUE, return the log-density.

Value

Numeric vector of densities (or log-densities) with length determined by standard recycling rules
for x and y.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@slu.se>

Examples

Evaluate the density at the peak
norm2d(0.5, 0.5, mu = c(0.5, 0.5), sd = c(0.2, 0.2))

Evaluate at multiple x values
norm2d(c(0.3, 0.7), 0.5, mu = c(0.5, 0.5), sd = c(0.2, 0.2))

Visualize on a grid
x <- y <- seq(0, 1, length.out = 100)
f <- Vectorize(function(x, y) norm2d(x, y, mu = c(0.5, 0.5), sd = c(0.2, 0.2)))
z <- outer(x, y, f)
image(x, y, z, col = terrain.colors(50), main = "Bivariate Normal Intensity")
contour(x, y, z, add = TRUE)

norm3d Trivariate normal density with independent components in space-time

Description

Evaluates a trivariate normal density on (x, y, t) with independent components (diagonal covari-
ance). The density is the product of three univariate normal densities:

f(x, y, t) = ϕ(x;µx, σx)ϕ(y;µy, σy)ϕ(t;µt, σt).

Usage

norm3d(x, y, t, mu = c(0.3, 0.3, 0.2), sd = c(0.05, 0.05, 0.05), log = FALSE)

norm3d 27

Arguments

x Numeric vector of x-coordinate(s).

y Numeric vector of y-coordinate(s).

t Numeric vector of time coordinate(s).

mu Numeric vector of length 3 giving c(mu_x, mu_y, mu_t).

sd Numeric vector of length 3 giving positive standard deviations c(sd_x, sd_y,
sd_t).

log Logical; if TRUE, return the log-density.

Value

Numeric vector of densities (or log-densities) with length determined by standard recycling rules
for x, y, and t.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

See Also

norm2d, get.lambda.function, estimate.st.intensity

Examples

norm3d(0.3, 0.3, 0.2) # peak value at the mean (with default parameters)
norm3d(c(0.2, 0.3), 0.3, 0.2)

x <- y <- seq(0, 1, length.out = 100)
z <- outer(x, y, function(x, y) norm3d(x, y, t = 0.2))
image(x, y, z, col = heat.colors(50), main = "Spatial slice of norm3d at t = 0.2")

28 plot_procedures

plot_procedures Plot original vs permuted time ordering

Description

Produces a side-by-side plot comparing the temporal component of an original spatio-temporal
point pattern with that of a permuted (or block-permuted) version. This graphical diagnostic is
intended to assess the effect of temporal reordering procedures used in separability tests.

Usage

plot_procedures(
original,
permuted,
title = "Permutation",
col = c("blue", "red"),
pch = 1,
...

)

Arguments

original A matrix or data frame with at least three columns (x, y, t). The time coordinate
is taken from column 3.

permuted A matrix or data frame with the same structure as original. The time coordi-
nate is taken from column 3.

title Character string; title for the permuted panel.

col Character vector of length 2 giving colors for the original and permuted panels.

pch Plotting character passed to plot.

... Further graphical parameters passed to plot.

Details

The function is commonly employed to visualize temporal permutations generated by procedures
such as sim.procedures or block.permut, which underpin pure and block permutations-based
inference for first-order separability (see Ghorbani et al., 2021, Section 3.2).

The function uses base R graphics to display two panels:

1. The temporal ordering of the original point pattern.

2. The temporal ordering after permutation or block permutation.

This diagnostic is particularly useful when validating permutation-based inference procedures such
as chi2.test, dHS.test, and global.envelope.test.

Value

The function is invoked for its side effect of producing a plot and returns no value.

plot_stDPP 29

Author(s)

Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani, M., Vafaei, N., Dvořák, J., & Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

See Also

sim.procedures, block.permut, dHS.test, chi2.test

Examples

set.seed(123)
X <- cbind(x = runif(20), y = runif(20),

time = seq(0, 1, length.out = 20))

Example: visualize pure permutation
sim_pure <- sim.procedures(X, nperm = 1, method = "pure")[[1]]
plot_procedures(X, sim_pure, title = "Pure Permutation")

Example: visualize block permutation (requires Block_permutation)
if (requireNamespace("combinat", quietly = TRUE)) {

sim_block <- block.permut(nblocks = 4, X = X, nperm = 1)[[1]]
plot_procedures(X, sim_block, title = "Block Permutation")

}

plot_stDPP Plot spatio-temporal determinantal point process (DPP) realizations

Description

Produces diagnostic plots for spatio-temporal determinantal point process (DPP) simulations or
fitted models. The function formats the plot title based on the spatial and temporal interaction
parameters αs and αt, automatically displaying either the parameters themselves or their reciprocals
when greater than 1.

Usage

plot_stDPP(data, type = c("3D", "space", "time"), alpha_s, alpha_t)

30 plot_stlgcp

Arguments

data A spatio-temporal point pattern object suitable for plot_stpp(), typically from
the stpp or related packages.

type Character string specifying the type of plot to produce. This is passed directly
to plot_stpp(). Typical values are "3D", "space", and "time".

alpha_s Numeric scalar (> 0). Spatial interaction parameter of the DPP model.

alpha_t Numeric scalar (> 0). Temporal interaction parameter of the DPP model.

Details

If αs > 1 and αt > 1, the title displays α−1
s and α−1

t , which correspond to interaction ranges.
Otherwise, the parameters are shown directly.

The function then calls plot.ST.pp() to produce the actual plot.

Value

No return value. The function is called for its side effect of producing a diagnostic plot.

Examples

Simulate a stationary separable Matérn ST-DPP
sim <- rstDPP(

mode = "stationary",
model = "S",
spectral = "matern",
alpha_s = 10,
alpha_t = 4.7,
nu = 2,
eps = 1,
lambda_max = 70,
grid_size = 1.5

)
plot_stDPP(sim, type = "3D", alpha_s = 10, alpha_t = 4.7)

plot_stlgcp Plot spatio-temporal log-Gaussian Cox process (LGCP) realizations
as time-sliced maps

Description

Produces a sequence of spatial raster maps displaying the evolution of a simulated or fitted spatio-
temporal log-Gaussian Cox process (LGCP) over time. Each map shows the latent Gaussian random
field (intensity surface) at a given time slice, with the corresponding observed point events overlaid.
This visualization helps interpret temporal evolution and spatial clustering patterns in simulated or
fitted LGCP models.

plot_stlgcp 31

Usage

plot_stlgcp(data)

Arguments

data A list containing components from a spatio-temporal LGCP model or simulation
output:

RF A list describing the latent Gaussian random field, with elements xcoord,
ycoord, tcoord, and Z, where Z is a 3D array of intensity (or log-intensity)
surfaces over space and time.

st.lgcp A data frame with columns x, y, and t giving the spatial and temporal
coordinates of observed events.

Details

The function plots up to 10 evenly spaced time slices from the latent intensity field and overlays
the corresponding point events accumulated up to each time point. Each panel represents a spatial
realization at a fixed time tk, providing a visual summary of the dynamic spatio-temporal structure
of the LGCP.

This approach follows the visualization principles used in Ghorbani et al. (2021, 2025), where
LGCPs are employed to assess the behavior of separability diagnostics and kernel-based tests in
complex, non-separable point process settings. The raster intensity surfaces illustrate latent het-
erogeneity, while the overlaid points display observed event clustering relative to the underlying
field.

Time slices are selected at evenly spaced quantiles of the temporal domain, and each plot includes:

• A raster map of the latent intensity surface at time tk;

• White contour lines showing equal-intensity regions;

• Overlaid black points representing events observed up to tk.

The resulting plots are arranged into a single grid layout using the patchwork package for ease of
comparison.

Value

A combined ggplot object displaying up to ten spatial raster maps arranged in a grid layout (by
default, two rows and up to five columns). Each panel corresponds to one time slice. The function
returns the combined plot object.

Author(s)

Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability hy-
pothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.

32 plot_stpp

See Also

Gauss.st.F for simulating spatio-temporal Gaussian random fields; get.lambda.function and
rstpoispp for generating intensity-based spatio-temporal point processes.

Examples

Example: visualize a spatio-temporal LGCP simulation
out <- rstLGCPP(xlim = c(0,1),

ylim = c(0,1),
tlim = c(0,1),
grid = c(15,15,10))

plot_stlgcp(data = out)

plot_stpp Plot a spatio-temporal point pattern

Description

Provides flexible visualization tools for spatio-temporal point patterns. Depending on the chosen
display type, the function produces one of three plots:

• A 3D scatterplot showing event locations in space–time ("3D");

• A 2D spatial projection of points in the spatial plane ("space");

• A temporal histogram with an overlaid kernel density curve ("time").

The input dataset must contain three columns corresponding to the spatial (x, y) and temporal (t)
coordinates of events.

Usage

plot_stpp(data, type = c("3D", "space", "time"), time_bins = 30, title = NULL)

Arguments

data A numeric matrix or data frame with at least three columns representing event
coordinates. If data is a matrix, the first three columns are interpreted as x, y,
and t. If data is a data frame, the function uses columns named x, y, t when
present; otherwise it uses the first three columns.

type Character string specifying the type of visualization to produce: "3D" for a
three-dimensional scatterplot; "space" for a 2D spatial plot of x versus y; or
"time" for a histogram of event times with a smoothed density overlay.

time_bins Integer specifying the number of bins in the histogram when type = "time".
Default is 30.

title Optional character string giving a plot title. If NULL, a default title is used.

plot_stpp 33

Details

The function serves as an exploratory tool for investigating the spatial, temporal, or joint space–time
structure of point pattern data. Such visualization is often a first step before conducting statistical
analyses of separability or intensity modeling (see Ghorbani et al., 2021).

3D mode Displays events in a 3D coordinate system using the scatterplot3d package, allowing a
quick assessment of clustering and temporal trends in space–time.

Spatial mode Projects points onto the spatial plane (x–y), showing spatial structure independent
of time.

Temporal mode Displays the marginal temporal distribution of events as a histogram with a kernel
density overlay, facilitating the visual detection of temporal nonstationarity.

Visualization is particularly useful for validating the realism of simulated data (e.g. from rstpoispp
or Gauss.st.F) and for preliminary inspection prior to applying tests such as chi2.test, global.envelope.test,
or dHS.test.

Value

Produces a plot as a side effect. Nothing is returned.

Note

The 3D visualization requires the scatterplot3d package.

Author(s)

Nafiseh Vafaei <nafiseh.vafaei@slu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability hy-
pothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.

See Also

rstpoispp, estimate.st.intensity, plot_stlgcp, chi2.test, dHS.test

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), runif(100, 0, 10))

Visualize point pattern in 3D space–time
plot_stpp(X, type = "3D")

View spatial projection
plot_stpp(X, type = "space")

Inspect temporal distribution

34 random.shift

plot_stpp(X, type = "time", time_bins = 20)

random.shift Apply a circular random shift to the temporal component of a spatio-
temporal point pattern

Description

Performs a circular random shift of the temporal coordinate in a spatio-temporal point pattern. This
operation preserves the spatial configuration while randomizing the temporal component under the
assumption of temporal stationarity. The shift amount is drawn uniformly from [0, 1] and applied
modulo 1, ensuring that the time window is maintained. The resulting dataset can be used to con-
struct null models for hypothesis testing of first-order separability or temporal independence.

Usage

random.shift(X, shifted_col = 3)

Arguments

X A numeric matrix or data frame containing the spatio-temporal point pattern.
Must include at least one numeric column representing time.

shifted_col Integer index specifying which column to shift (typically the time coordinate).
Default is 3.

Details

The circular random shift is a common resampling procedure for generating null models of temporal
randomness while preserving the overall temporal marginal distribution and spatial structure.

For each dataset, a single uniform random shift value ∆ ∼ Uniform(0, 1) is drawn and added to
the temporal coordinate. The shifted times are then wrapped around the unit interval:

t∗i = (ti +∆) mod 1, i = 1, . . . , n.

Value

A matrix or data frame (matching the input type) with the time column shifted modulo 1.

References

Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separabil-
ity hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161,
107245.

rstDPP 35

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), runif(100)) # x, y, t
X_shifted <- random.shift(X)

Compare original and shifted time values
head(X[,3])
head(X_shifted[,3])

Verify shift visually
plot(X[, 3], type = "o", col = "blue", ylab = "Time", xlab = "Index",

main = "Original vs Shifted Times")
lines(X_shifted[, 3], type = "o", col = "red")
legend("topright", legend = c("Original", "Shifted"),

col = c("blue", "red"), lty = 1, pch = 1)

rstDPP Simulate a spatio-temporal Determinantal Point Process (DPP) based
on spectral density

Description

Generates a realization of a spatio-temporal determinantal point process (DPP) using a user-defined
spectral density model. The function supports both separable (model = "S") and non-separable
(model = "NS") dependence structures and allows for either exponential or Mat\’ern-type spectral
densities. The simulation is performed on a 3D spatio-temporal frequency grid and can incorporate
user-specified intensity functions for thinning.

Usage

rstDPP(
mode = c("stationary", "inhom"),
model = c("S", "NS"),
spectral = c("exp", "matern"),
alpha_s,
alpha_t = NULL,
lambda_max,
nu = 2,
eps = 1,
lambda_s = NULL,
lambda_non_s = NULL,
grid_size = 4

)

36 rstDPP

Arguments

mode Character. Type of dependence model:

"Stationary" A homogeneous spatio-temporal DPP is generated.
"Inhomogeneous" A non-homogeneous spatio-temporal DPP is generated.

model Character. Type of dependence model:

"S" Separable spatio-temporal covarince function model, where space and time
components are separable.

"NS" Non-separable spatio-temporal model, allowing interaction between space
and time.

spectral Character. Type of spectral density function to use: "exp" for exponential spec-
tral form or "matern" for a Mat\’ern-type spectral model.

alpha_s Numeric. Spatial decay or range parameter in the spectral density.

alpha_t Numeric. Temporal decay or range parameter in the spectral density.

lambda_max Numeric. The maximum intensity value used for thinning. Must be specified.

nu Numeric. Smoothness parameter for the Mat\’ern-type spectral density (only
relevant if spectral = "matern"). Default is 2.

eps Numeric. Degree of separability for the Mat\’ern model: eps = 0 corresponds
to full non-separability, eps = 1 yields complete separability, and intermediate
values provide partial separability.

lambda_s Optional. Intensity function lambda_s(u, t) for separable models. If not pro-
vided, a default function is used.

lambda_non_s Optional. Intensity function lambda_non_s(u, t) for non-separable models. If
not provided, a default function is used.

grid_size Numeric. Half-width of the spatio-temporal frequency grid. The total grid size
is (2 * grid_size + 1)^3.

Details

This function implements a spectral simulation method for spatio-temporal DPPs, following the
theoretical framework introduced in Vafaei et al. (2023) and Ghorbani et al. (2025).

The algorithm proceeds as follows:

1. Construct a 3D grid of spatial and temporal frequency components (ωx, ωy, τ).

2. Evaluate the chosen spectral density ϕ(ω, τ) across the grid.

3. Use the resulting spectral values as eigenvalues to simulate a realization of a DPP via spatstat.model ::
rdpp().

4. Optionally apply thinning using a user-defined intensity function λ(u, t), scaled by lambda_max,
to induce inhomogeneity.

Two spectral families are supported:

• Exponential form:

ϕ(ω, τ) ∝ exp
[
−(παs|ω|)2

] (
1 + 4(παtτ)

2
)−1

.

rstDPP 37

• Mat\’ern-type form:

ϕϵ(ω, τ) ∝
(
α2
sα

2
t + α2

t |ω|2 + α2
sτ

2 + ϵ|ω|2τ2
)−ν

,

where ϵ ∈ [0, 1] determines the degree of separability between space and time.

This framework enables simulation of spatio-temporal point patterns that exhibit varying degrees of
spatial–temporal dependence, providing a versatile tool for evaluating separability tests and model-
ing non-separable dynamics.

Value

A numeric matrix with three columns (x, y, t) representing the retained spatio-temporal events after
thinning.

References

Vafaei, N., Ghorbani, M., Ganji, M., and Myllymäki, M. (2023). Spatio-temporal determinantal
point processes. arXiv:2301.02353.

Ghorbani, M., Vafaei, N., and Myllymäki, M. (2025). A kernel-based test for the first-order separa-
bility of spatio-temporal point processes. TEST, 34, 580-611. https://doi.org/10.1007/s11749-025-
00972-y

See Also

plot_stpp for visualizing spatio-temporal point patterns.

Examples

Simulate a stationary separable Mat\'ern ST-DPP
if (requireNamespace("spatstat", quietly = TRUE)) {
sim <- rstDPP(

mode = "stationary",
model = "S",
spectral = "matern",
alpha_s = 10,
alpha_t = 4.7,
nu = 2,
eps = 1,
lambda_max = 70,
grid_size = 2

)
plot_stDPP(sim, type = "3D", alpha_s = 10, alpha_t = 4.7)
example 2
Generate realization
sim <- rstDPP(mode = "stationary",

model = "S",
spectral = "matern",
alpha_s = 10, alpha_t = 4.7,
nu = 2,

eps = 1,
lambda_s = 70,

38 rstLGCPP

lambda_non_s = NULL,
grid_size = 2,
lambda_max=70)

head(sim)
}

rstLGCPP Simulate a spatio-temporal Log-Gaussian Cox process (LGCP)

Description

Generates a realization of a spatio-temporal LGCP over a user-defined domain. The process is
simulated using a log-Gaussian random field combined with a deterministic trend function, and
points are generated by thinning a homogeneous Poisson process.

Usage

rstLGCPP(
xlim = NULL,
ylim = NULL,
tlim = NULL,
grid = c(15, 15, 10),
mu = NULL,
Lambda = NULL,
Lmax = NULL,
par1 = c(1, 0.05),
par2 = c(1, 0.06),
sigmas = c(0.5, 0.5, 1),
mu_par = c(1.2, 0.25, 5)

)

Arguments

xlim, ylim, tlim Numeric vectors of length 2 specifying the spatial and temporal domains.

grid Integer vector of length 3 specifying the number of grid cells in x, y, and t.

mu Optional. A function of (x, y, t, par) defining a deterministic trend. Default is
nonlinear.

Lambda Optional. A user-supplied 3D intensity array or function. If NULL, it’s generated
from the latent Gaussian field.

Lmax Optional. Maximum intensity used for thinning. Can be numeric or a function.
If NULL, it’s computed automatically.

par1, par2 Parameters for temporal and spatial exponential covariance models, respectively.

sigmas Weights for combining spatial, temporal, and spatio-temporal components of
the latent Gaussian field.

mu_par Parameters passed to the default trend function mu() if not user-supplied.

rstpoispp 39

Value

A list with:

st.lgcp A data frame of simulated spatio-temporal points.

RF The latent Gaussian field output from Gauss.st.F.

Examples

out <- rstLGCPP(xlim = c(0,1),
ylim = c(0,1),
tlim = c(0,1),
grid = c(15,15,10))

plot_stlgcp(data = out)
plot_stpp(data = out$st.lgcp, type = "3D")

rstpoispp Simulate an inhomogeneous spatio-temporal Poisson point process

Description

Generates a realization of an inhomogeneous Poisson point process (STPP) in space and time us-
ing the standard thinning method. The user provides an intensity function λ(u, t) and an upper
bound Lmax on its value over the observation window. The algorithm first samples candidate events
uniformly over space and time and then retains each candidate with probability proportional to its
normalized intensity λ(u, t)/Lmax.

Usage

rstpoispp(
lambda,
Lmax,
s.region = splancs::as.points(c(0, 1, 1, 0), c(0, 0, 1, 1)),
t.region = c(0, 1)

)

Arguments

lambda A function of the form lambda(u, t) that returns the intensity value at coordi-
nates (x, y, t).

Lmax A numeric value giving the known or estimated maximum of the intensity func-
tion lambda over the spatial and temporal window. Used for thinning.

s.region A matrix with two columns giving the polygonal spatial window. Each row is a
vertex of the polygon. Default is the unit square.

t.region A numeric vector of length 2 giving the temporal observation window. Default
is c(0,1).

40 rstpoispp

Details

The method implements the classical thinning algorithm for simulating inhomogeneous Poisson
processes:

1. Draw N∗ ∼ Poisson(Lmax |W | |T |), where |W | and |T | denote the spatial and temporal
window measures.

2. Generate N∗ candidate points uniformly over W × T .

3. Retain each point (ui, ti) independently with probability pi = λ(ui, ti)/Lmax.

The result is a realization of an inhomogeneous STPP with intensity function λ(u, t).

This simulator underpins the spatio-temporal framework introduced in Ghorbani et al. (2021, 2025)
for studying first-order separability. By selecting appropriate intensity functions (see get.lambda.function),
users can generate fully separable, partially separable, or non-separable spatio-temporal patterns,
enabling direct evaluation of separability tests such as chi2.test, global.envelope.test, or
dHS.test.

Value

A numeric matrix with three columns (x, y, t) representing the retained points from the inhomoge-
neous Poisson process.

Note

The intensity function λ(u, t) should return non-negative numeric values and be bounded above by
Lmax across the observation domain.

Author(s)

Mohammad Ghorbani <mohammad.ghorbani@slu.se>
Nafiseh Vafaei <nafiseh.vafaei@ltu.se>

References

Ghorbani M., Vafaei N., Dvořák J., Myllymäki M. (2021). Testing the first-order separability hy-
pothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.

Ghorbani, M., Vafaei, N. and Myllymäki, M. (2025). A kernel-based test for the first-order separa-
bility of spatio-temporal point processes, TEST .

See Also

get.lambda.function to construct spatio-temporal intensity models; get.lambda.max to com-
pute intensity maxima; estimate.st.intensity for intensity estimation; plot_stpp for visual-
ization.

run_fmd_example 41

Examples

Example 1: Simulate a separable spatio-temporal Poisson process
lambda <- get.lambda.function(N = 200, g = 50, model = 1)
Lmax <- get.lambda.max(N = 200, g = 50, model = 1)
X <- rstpoispp(lambda, Lmax)
head(X)

Example 2: Non-separable model (Model 4)
lambda <- get.lambda.function(N = 200, g = 50, model = 4)
Lmax <- get.lambda.max(N = 200, g = 50, model = 4)
sim_data <- rstpoispp(lambda, Lmax)

Spatial projection of simulated events
plot(sim_data[, 1:2], asp = 1, main = "Spatial Projection of Simulated stPP")
Example 3: 3D visualization using plot_ST_pp()
plot_stpp(X, type = "3D", title="Realisation of a stPP")

run_fmd_example Spatio-temporal analysis of the 2001 FMD outbreak (illustrative ex-
ample)

Description

This function tests first-order separability for the foot-and-mouth disease (FMD) outbreak data ob-
served at the North Cumbria study region provided by the stpp package.

Usage

run_fmd_example()

Details

The example includes kernel-based estimates of the spatio-temporal intensity and related separabil-
ity diagnostics on a regular spatio-temporal grid for fmd data as well as the dHSIC test.

The datasets fmd and northcumbria are loaded from the stpp package and are used purely for
illustration. They do not contain confidential information and have no scientific value.

Value

An object of class "test" returned by dHS.test.

References

Diggle, P., Rowlingson, B. and Su, T. (2005). Point process methodology for on-line spatio-
temporal disease surveillance. Environmetrics, 16, 423–434.

42 S.based.functions

See Also

fmd, northcumbria, S.based.functions, dHS.test

Examples

if (requireNamespace("stpp", quietly = TRUE)) {

library(stpp)

Load data
data("fmd", "northcumbria", package = "stpp")

Define spatial and temporal region
s.region <- northcumbria / 1000
t.region <- c(0, 200)

Create a spatio-temporal point pattern
X <- as.3dpoints(
fmd[, 1] / 1000,
fmd[, 2] / 1000,
fmd[, 3]

)

Define observation window
ObsW <- spatstat.geom::owin(

poly = list(
x = s.region[, 1],
y = s.region[, 2]

)
)

Run Hilbert-Schmidt independence test
oldpar <- par(no.readonly = TRUE) # save current graphics settings
on.exit(par(oldpar), add = TRUE) # restore after example

dHS.test(
X,
sim.procedure = "block_per",
nblocks = 5L,
nperm = 1999L,
nsim = 199L,
bandwidth = NULL

)
}

S.based.functions Compute S-based test function for testing the null hypothesis of first-
order separability

S.based.functions 43

Description

Computes kernel-based estimates of the spatio-temporal intensity and related separability diag-
nostics, either on a regular spatio-temporal grid ("pixels") or at the observed event locations
("points").

Usage

S.based.functions(
X,
s.region,
t.region,
owin = NULL,
at = c("pixels", "points"),
n.grid = c(25L, 25L, 20L),
epsilon = NULL,
delta = NULL,
output = "all"

)

Arguments

X Numeric matrix/data.frame with three columns giving (x, y, t).

s.region Numeric matrix with two columns giving polygon vertices of the spatial win-
dow.

t.region Numeric vector of length 2 giving the temporal window c(tmin, tmax).

owin Optional spatial window of class "owin" (from spatstat.geom). Used only
when at="pixels" to set values outside the window to NA.

at Character string: "pixels" or "points".

n.grid Integer vector of length 3 giving the grid resolution in x, y, and t (used when
at="pixels"; still checked for length/positivity in both modes).

epsilon Optional numeric scalar (>0). Spatial bandwidth. If NULL, estimated internally.

delta Optional numeric scalar (>0). Temporal bandwidth. If NULL, estimated inter-
nally.

output Character string selecting which component to return. Use "all" (default) to
return all available components; otherwise return only the selected component
along with bandwidths and coordinates.

Details

The function is a wrapper that (i) validates inputs, (ii) computes bandwidths and Gaussian edge-
correction masses via calc.bandwidths.and.edgecorr, and (iii) delegates the actual estimation
to estimate.intensity.pixel or estimate.intensity.point.

When at="points", spatial/temporal profiles such as S.space and S.time are typically not defined
and are returned as NULL by the pointwise routine.

44 sim.procedures

Value

If output="all", returns the full list produced by the chosen computation routine, augmented with
epsilon and delta.

If output is a single component name, returns a list with:

S The requested component.

epsilon Spatial bandwidth used.

delta Temporal bandwidth used.

x,y,t Coordinates returned by the underlying routine (may be NULL).

Examples

X <- cbind(stats::runif(50), stats::runif(50), stats::runif(50))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol = 2, byrow = TRUE)
t.region <- c(0, 1)
res_all <- S.based.functions(X, s.region, t.region, at = "points")
res_Sfun <- S.based.functions(X, s.region, t.region, at = "points", output = "S.fun")

sim.procedures Generate permuted versions (pure or block) of a spatio-temporal point
pattern

Description

Implements two types of permutation procedures for resampling the time component of spatio-
temporal point process data:

"pure" Pure random permutation of the time coordinates.

"block" Block permutation where the time dimension is divided into consecutive blocks, and per-
mutations are applied at the block level.

These procedures are used for generating surrogate datasets under the null hypothesis of first-order
separability.

Usage

sim.procedures(X, nperm = 1999, nblocks = 4, method = c("block", "pure"))

Arguments

X A numeric matrix or data frame with at least three columns, where the third
column represents time.

nperm Integer. The number of permuted datasets to generate.

nblocks Integer. The number of temporal blocks to use for block permutation. Must be
> 2.

method Character. The permutation strategy to use. One of "pure" or "block".

sim.procedures 45

Value

A list of nperm matrices. Each matrix is a permuted version of the original input X, where the third
column (time) has been resampled based on the selected method.

Examples

set.seed(123)
X <- cbind(runif(100), runif(100), sort(runif(100)))

Pure permutation
sims_pure <- sim.procedures(X, nperm = 10, method = "pure")
head(sims_pure[[1]])
Block permutation
sims_block <- sim.procedures(X, nperm = 10, nblocks = 5, method = "block")

Visualize the first result from block permutation
plot_stpp(sims_block[[1]], type = "3D")

Index

block.permut, 2, 8, 12, 25, 28, 29
bw.diggle, 4, 5

calc.bandwidths.and.edgecorr, 4, 13, 15,
17, 43

check.args, 6
chi2.test, 7, 9, 10, 12, 17, 21, 28, 29, 33, 40
chisq.test, 9, 10
chisq.test.stPP, 7, 8, 9

density, 4, 5
dHS.test, 10, 17, 21, 28, 29, 33, 40–42
dnorm, 14, 20

estimate.intensity.pixel, 12, 43
estimate.intensity.point, 14, 43
estimate.st.intensity, 15, 27, 33, 40

fmd, 42

Gauss.st.F, 17, 32, 33, 39
get.lambda.function, 19, 21–23, 27, 32, 40
get.lambda.max, 21, 40
global.envelope.test, 17, 23, 28, 33, 40
global_envelope_test, 24, 25

mvrnorm, 18

norm2d, 20, 21, 25, 27
norm3d, 20, 21, 26
northcumbria, 42

owin, 5

plot, 28
plot.global_envelope, 25
plot_procedures, 28
plot_stDPP, 29
plot_stlgcp, 30, 33
plot_stpp, 32, 37, 40
ppp, 5

random.shift, 34
rdist, 18
rstDPP, 35
rstLGCPP, 38
rstpoispp, 20, 21, 23, 32, 33, 39
run_fmd_example, 41

S.based.functions, 13, 24, 25, 42, 42
sim.procedures, 3, 8, 11, 12, 25, 28, 29, 44

46

	block.permut
	calc.bandwidths.and.edgecorr
	check.args
	chi2.test
	chisq.test.stPP
	dHS.test
	estimate.intensity.pixel
	estimate.intensity.point
	estimate.st.intensity
	Gauss.st.F
	get.lambda.function
	get.lambda.max
	global.envelope.test
	norm2d
	norm3d
	plot_procedures
	plot_stDPP
	plot_stlgcp
	plot_stpp
	random.shift
	rstDPP
	rstLGCPP
	rstpoispp
	run_fmd_example
	S.based.functions
	sim.procedures
	Index

