The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette shows how to use Signac to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We also compared Signac to another popular cell type annotation tool, SingleR. We start with raw counts.
Read the CEL-seq2 data.
<- function(counts.file, meta.file) {
ReadCelseq = suppressWarnings(readr::read_tsv(counts.file))
E <- E$gene
gns = E[, -1]
E = Matrix::Matrix(as.matrix(E), sparse = TRUE)
E rownames(E) <- gns
E
}
= "./fls/celseq_matrix_ru10_molecules.tsv.gz"
counts.file = "./fls/celseq_meta.immport.723957.tsv"
meta.file
= ReadCelseq(counts.file = counts.file, meta.file = meta.file)
E = suppressWarnings(readr::read_tsv(meta.file))
M
# filter data based on depth and number of genes detected
= Matrix::colSums(E != 0)
kmu = Matrix::colSums(E)
kmu2 = E[, kmu > 200 & kmu2 > 500]
E
# filter by mitochondrial percentage
= grepl("^MT-", rownames(E))
logik = Matrix::colSums(E[logik, ])/Matrix::colSums(E) * 100
MitoFrac = E[, MitoFrac < 20] E
require(SingleR)
data("hpca")
= SingleR(sc_data = E, ref_data = hpca$data, types = hpca$main_types, fine.tune = F, numCores = 4)
Q save(file = "fls/SingleR_Results.rda", Q)
= M$type[match(colnames(E), M$cell_name)]
True_labels saveRDS(True_labels, file = "fls/celltypes_amp_synovium_true.rds")
Start with the standard pre-processing steps for a Seurat object.
library(Seurat)
Create a Seurat object, and then perform SCTransform normalization. Note:
# load data
<- CreateSeuratObject(counts = E, project = "FACs")
synovium
# run sctransform
<- SCTransform(synovium, verbose = F) synovium
Perform dimensionality reduction by PCA and UMAP embedding. Note:
# These are now standard steps in the Seurat workflow for visualization and clustering
<- RunPCA(synovium, verbose = FALSE)
synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE)
synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE) synovium
library(SignacX)
Generate Signac labels for the Seurat object. Note:
# Run Signac
<- Signac(synovium, num.cores = 4)
labels = GenerateLabels(labels, E = synovium) celltypes
SignacX (rows are FACs labels, columns are SignacX)
B | F | M | NonImmune | T | Unclassified | |
---|---|---|---|---|---|---|
B | 945 | 0 | 2 | 0 | 0 | 19 |
F | 0 | 2218 | 10 | 223 | 0 | 58 |
M | 1 | 28 | 891 | 18 | 0 | 96 |
T | 4 | 0 | 0 | 0 | 1768 | 21 |
SingleR (rows are FACs labels, columns are SingleR)
B | Chondr. | F | M | NK | NonImmune | T | |
---|---|---|---|---|---|---|---|
B | 958 | 1 | 0 | 6 | 1 | 0 | 0 |
F | 2 | 1468 | 36 | 19 | 23 | 960 | 1 |
M | 4 | 39 | 0 | 964 | 6 | 21 | 0 |
T | 9 | 0 | 0 | 2 | 368 | 0 | 1414 |
Note:
Signac accuracy
= xy != "Unclassified"
logik = round(sum(xy[logik] == True_labels[logik])/sum(logik) * 100, 2)
Signac_Accuracy Signac_Accuracy
## [1] 95.32
SingleR accuracy
= round(sum(xx == True_labels)/sum(logik) * 100, 2)
SingleR_Accuracy SingleR_Accuracy
## [1] 55.21
Save results
saveRDS(synovium, file = "synovium_signac.rds")
saveRDS(celltypes, file = "synovium_signac_celltypes.rds")
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.3 magrittr_2.0.1 formatR_1.7 htmltools_0.5.1.1
## [5] tools_4.0.3 yaml_2.2.1 stringi_1.5.3 rmarkdown_2.6
## [9] highr_0.8 knitr_1.30 stringr_1.4.0 digest_0.6.27
## [13] xfun_0.20 rlang_0.4.10 evaluate_0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.