The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Benchmarking SignacX and SingleR with synovial flow cytometry data

Mathew Chamberlain

2021-11-18

This vignette shows how to use Signac to annotate flow-sorted synovial cells by integrating SignacX with Seurat. We also compared Signac to another popular cell type annotation tool, SingleR. We start with raw counts.

Load data

Read the CEL-seq2 data.

ReadCelseq <- function(counts.file, meta.file) {
    E = suppressWarnings(readr::read_tsv(counts.file))
    gns <- E$gene
    E = E[, -1]
    E = Matrix::Matrix(as.matrix(E), sparse = TRUE)
    rownames(E) <- gns
    E
}

counts.file = "./fls/celseq_matrix_ru10_molecules.tsv.gz"
meta.file = "./fls/celseq_meta.immport.723957.tsv"

E = ReadCelseq(counts.file = counts.file, meta.file = meta.file)
M = suppressWarnings(readr::read_tsv(meta.file))

# filter data based on depth and number of genes detected
kmu = Matrix::colSums(E != 0)
kmu2 = Matrix::colSums(E)
E = E[, kmu > 200 & kmu2 > 500]

# filter by mitochondrial percentage
logik = grepl("^MT-", rownames(E))
MitoFrac = Matrix::colSums(E[logik, ])/Matrix::colSums(E) * 100
E = E[, MitoFrac < 20]

SingleR

require(SingleR)
data("hpca")
Q = SingleR(sc_data = E, ref_data = hpca$data, types = hpca$main_types, fine.tune = F, numCores = 4)
save(file = "fls/SingleR_Results.rda", Q)
True_labels = M$type[match(colnames(E), M$cell_name)]
saveRDS(True_labels, file = "fls/celltypes_amp_synovium_true.rds")

Seurat

Start with the standard pre-processing steps for a Seurat object.

library(Seurat)

Create a Seurat object, and then perform SCTransform normalization. Note:

# load data
synovium <- CreateSeuratObject(counts = E, project = "FACs")

# run sctransform
synovium <- SCTransform(synovium, verbose = F)

Perform dimensionality reduction by PCA and UMAP embedding. Note:

# These are now standard steps in the Seurat workflow for visualization and clustering
synovium <- RunPCA(synovium, verbose = FALSE)
synovium <- RunUMAP(synovium, dims = 1:30, verbose = FALSE)
synovium <- FindNeighbors(synovium, dims = 1:30, verbose = FALSE)

SignacX

library(SignacX)

Generate Signac labels for the Seurat object. Note:

# Run Signac
labels <- Signac(synovium, num.cores = 4)
celltypes = GenerateLabels(labels, E = synovium)

Compare SignacX and SingleR with FACs labels

SignacX (rows are FACs labels, columns are SignacX)

B F M NonImmune T Unclassified
B 945 0 2 0 0 19
F 0 2218 10 223 0 58
M 1 28 891 18 0 96
T 4 0 0 0 1768 21

SingleR (rows are FACs labels, columns are SingleR)

B Chondr. F M NK NonImmune T
B 958 1 0 6 1 0 0
F 2 1468 36 19 23 960 1
M 4 39 0 964 6 21 0
T 9 0 0 2 368 0 1414

Note:

Signac accuracy

logik = xy != "Unclassified"
Signac_Accuracy = round(sum(xy[logik] == True_labels[logik])/sum(logik) * 100, 2)
Signac_Accuracy
## [1] 95.32

SingleR accuracy

SingleR_Accuracy = round(sum(xx == True_labels)/sum(logik) * 100, 2)
SingleR_Accuracy
## [1] 55.21

Save results

saveRDS(synovium, file = "synovium_signac.rds")
saveRDS(celltypes, file = "synovium_signac_celltypes.rds")
Session Info
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] compiler_4.0.3    magrittr_2.0.1    formatR_1.7       htmltools_0.5.1.1
##  [5] tools_4.0.3       yaml_2.2.1        stringi_1.5.3     rmarkdown_2.6    
##  [9] highr_0.8         knitr_1.30        stringr_1.4.0     digest_0.6.27    
## [13] xfun_0.20         rlang_0.4.10      evaluate_0.14

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.