The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Sometimes a target (continuous) distribution’s standardized cumulants yield polynomial transformation constants that generate an invalid power method pdf. This is an important consideration when utilizing a simulated distribution to perform power analysis or hypothesis testing. In the case of Headrick’s fifth-order approximation (2002), Headrick and Kowalchuk (2007) proposed that a correction can be used to increase the sixth cumulant’s value in order to produce a valid pdf. This is discussed in the help pages for find_constants
and the simulation functions (nonnormvar1
, rcorrvar
, and rcorrvar2
). These functions allow the user to input a Six
vector of correction values, and then choose the smallest value that generates a valid pdf. When Headrick generated his Table 1 (2002, p.691 - 692) containing the fifth-order polynomial transformation constants for some common symmetrical and asymmetrical theoretical densities, he did not discuss whether the constants generate valid power method pdfs. His 2007 paper with Kowalchuk explained how to verify if a given set of constants generates a valid pdf (for both Fleishman’s third-order (1978) and Headrick’s fifth-order method). These checks are implemented in pdf_check
, which is called by find_constants
.
The following example illustrates the use of the sixth cumulant correction vector when finding the constants for each of Headrick’s Table 1 distributions (given in Headrick.dist
), and compares distributions generated with the corrections to those generated without the corrections. (Note that the printr
Xie (2017) package is invoked to display the tables.)
The parameters are stored in H_params
. The order of the columns corresponds to the order of the columns in Headrick.dist
. The columns of H_params
are named as inputs for calc_theory
. Please see the appropriate R help page concerning the parameterization of each distribution. We are rounding the calculated standardized cumulants to 10 decimal places to ensure that the symmetric distributions have \(\Large \gamma_{1} = 0\) and \(\Large \gamma_{3} = 0\).
library("SimMultiCorrData")
library("printr")
H_stcum <- matrix(1, nrow = 4, ncol = ncol(Headrick.dist))
for (i in 1:ncol(H_params)) {
if (is.na(H_params[2, i])) {
params <- H_params[1, i]
} else {
params <- as.numeric(H_params[, i])
}
H_stcum[, i] <- round(calc_theory(Dist = colnames(H_params)[i],
params = params)[3:6], 10)
}
colnames(H_stcum) <- colnames(Headrick.dist)
rownames(H_stcum) <- c("skew", "skurtosis", "fifth", "sixth")
round(H_stcum[, 1:6], 5)
Gaussian | Logistic | Uniform | Laplace | Triangular | t_7df | |
---|---|---|---|---|---|---|
skew | 0 | 0.00000 | 0.00000 | 0 | 0.00000 | 0 |
skurtosis | 0 | 1.20000 | -1.20000 | 3 | -0.60000 | 2 |
fifth | 0 | 0.00000 | 0.00000 | 0 | 0.00000 | 0 |
sixth | 0 | 6.85714 | 6.85714 | 30 | 1.71424 | 80 |
round(H_stcum[, 7:12], 5)
t_10df | Chisq_1df | Chisq_2df | Chisq_3df | Chisq_4df | Chisq_8df | |
---|---|---|---|---|---|---|
skew | 0 | 2.82843 | 2 | 1.63299 | 1.41421 | 1.0 |
skurtosis | 1 | 12.00000 | 6 | 4.00000 | 3.00000 | 1.5 |
fifth | 0 | 67.88274 | 24 | 13.06394 | 8.48528 | 3.0 |
sixth | 10 | 479.99841 | 120 | 53.33333 | 30.00000 | 7.5 |
round(H_stcum[, 13:18], 5)
Chisq_16df | Chisq_32df | Beta_a4b4 | Beta_a4b2 | Beta_a4b1.5 | Beta_a4b1.25 | |
---|---|---|---|---|---|---|
skew | 0.70711 | 0.50000 | 0.00000 | -0.46771 | -0.69388 | -0.84815 |
skurtosis | 0.75000 | 0.37500 | -0.54545 | -0.37500 | -0.06860 | 0.22105 |
fifth | 1.06066 | 0.37500 | 0.00000 | 1.40312 | 1.82825 | 1.90702 |
sixth | 1.87500 | 0.46875 | 1.67832 | -0.42614 | -3.37911 | -5.82705 |
round(H_stcum[, 19:22], 5)
Weibull_a6b10 | Gamma_a10b10 | Rayleigh_a0.5msqrt0.5pi | Pareto_t10a1 | |
---|---|---|---|---|
skew | -0.37326 | 0.63246 | 0.63111 | 2.81106 |
skurtosis | 0.03546 | 0.60000 | 0.24509 | 14.82857 |
fifth | 0.44706 | 0.75895 | -0.31314 | 130.20815 |
sixth | -1.02207 | 1.20000 | -0.86829 | 1808.89959 |
Note that the standardized cumulants match those found by Headrick, except for the Gamma(\(\Large \alpha = 10,\ \beta = 10\)) distribution. Either there is a mistake in Headrick’s table, or he is using a different parameterization.
The sixth cumulant corrections will be chosen based on previous analysis in order to decrease computation time. If the user does not know what a sixth cumulant correction needs to be, a wide range with a small increment in values may be specified, i.e. Six = seq(0.1, 10, 0.1)
. In situations where the user has a better idea of the necessary correction, a smaller vector should be chosen. In the case of the Triangular distribution, the standardized kurtosis has been changed to the lower kurtosis boundary (found using calc_lower_skurt
).
Six <- list(NULL, seq(1.7, 1.8, 0.01), seq(0.5, 2, 0.5), seq(25.1, 25.2, 0.01),
seq(0.1, 0.3, 0.01), NULL, NULL, seq(0.5, 2, 0.5),
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
seq(0.01, 0.05, 0.01), seq(0.15, 0.2, 0.01), seq(0.5, 2, 0.5),
NULL, seq(0.5, 2, 0.5), seq(0.5, 2, 0.5))
H_consol <- list()
start.time <- Sys.time()
for (i in 1:ncol(H_stcum)) {
skurtsH <- ifelse(colnames(H_stcum)[i] == "Triangular", -0.5856216,
H_stcum[2, i])
H_consol[[i]] <- find_constants(method = "Polynomial", skews = H_stcum[1, i],
skurts = skurtsH, fifths = H_stcum[3, i],
sixths = H_stcum[4, i], Six = Six[[i]])
}
stop.time <- Sys.time()
Time <- round(difftime(stop.time, start.time, units = "min"), 3)
cat("Total computation time:", Time, "minutes \n")
## Total computation time: 0.019 minutes
H_cons <- matrix(1, nrow = 7, ncol = ncol(Headrick.dist))
valid <- numeric(ncol(Headrick.dist))
for (i in 1:ncol(H_stcum)) {
H_cons[1:6, i] <- H_consol[[i]]$constants
H_cons[7, i] <- ifelse(is.null(H_consol[[i]]$SixCorr1), NA,
H_consol[[i]]$SixCorr1)
valid[i] <- H_consol[[i]]$valid
}
colnames(H_cons) <- colnames(Headrick.dist)
rownames(H_cons) <- c("c0", "c1", "c2", "c3", "c4", "c5", "sixcorr")
colnames(H_cons)[valid == FALSE]
## [1] "Uniform" "Chisq_1df"
## [3] "Weibull_a6b10" "Rayleigh_a0.5msqrt0.5pi"
## [5] "Pareto_t10a1"
Therefore, the Uniform(\(\Large 0,\ 1\)), Chisq(\(\Large df = 1\)), Weibull(\(\Large \alpha = 6,\ \beta = 10\)), Rayleigh(\(\Large \alpha = 0.5,\ \mu = \sqrt{0.5 * \pi}\)), and Pareto(\(\Large \theta = 10,\ \alpha = 1\)) distributions still have invalid power method pdf constants.
round(H_cons[, 1:6], 6)
Gaussian | Logistic | Uniform | Laplace | Triangular | t_7df | |
---|---|---|---|---|---|---|
c0 | 0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
c1 | 1 | 0.887926 | 1.347438 | 0.782367 | 1.100185 | 0.907394 |
c2 | 0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
c3 | 0 | 0.036052 | -0.140177 | 0.067899 | -0.037538 | 0.014980 |
c4 | 0 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
c5 | 0 | 0.000001 | 0.001808 | 0.000000 | 0.000632 | 0.002780 |
sixcorr | NA | 1.750000 | 2.000000 | 25.140000 | 0.160000 | NA |
round(H_cons[, 7:12], 6)
t_10df | Chisq_1df | Chisq_2df | Chisq_3df | Chisq_4df | Chisq_8df | |
---|---|---|---|---|---|---|
c0 | 0.000000 | -0.397713 | -0.307740 | -0.259037 | -0.227508 | -0.163968 |
c1 | 0.920482 | 0.621096 | 0.800560 | 0.867102 | 0.900716 | 0.950794 |
c2 | 0.000000 | 0.416871 | 0.318764 | 0.265362 | 0.231610 | 0.165391 |
c3 | 0.021453 | 0.068429 | 0.033500 | 0.021276 | 0.015466 | 0.007345 |
c4 | 0.000000 | -0.006386 | -0.003675 | -0.002108 | -0.001367 | -0.000474 |
c5 | 0.000830 | 0.000043 | 0.000159 | 0.000092 | 0.000055 | 0.000014 |
sixcorr | NA | 2.000000 | NA | NA | NA | NA |
round(H_cons[, 13:18], 6)
Chisq_16df | Chisq_32df | Beta_a4b4 | Beta_a4b2 | Beta_a4b1.5 | Beta_a4b1.25 | |
---|---|---|---|---|---|---|
c0 | -0.116936 | -0.083017 | 0.000000 | 0.108304 | 0.162966 | 0.200396 |
c1 | 0.975534 | 0.987806 | 1.093437 | 1.104253 | 1.089984 | 1.075051 |
c2 | 0.117433 | 0.083192 | 0.000000 | -0.123347 | -0.187329 | -0.231504 |
c3 | 0.003573 | 0.001762 | -0.035711 | -0.045284 | -0.044950 | -0.044208 |
c4 | -0.000166 | -0.000058 | 0.000000 | 0.005014 | 0.008121 | 0.010369 |
c5 | 0.000004 | 0.000001 | 0.000752 | 0.001285 | 0.001445 | 0.001640 |
sixcorr | NA | NA | NA | NA | 0.030000 | 0.180000 |
round(H_cons[, 19:22], 6)
Weibull_a6b10 | Gamma_a10b10 | Rayleigh_a0.5msqrt0.5pi | Pareto_t10a1 | |
---|---|---|---|---|
c0 | 0.065524 | -0.104760 | -0.107593 | -0.345859 |
c1 | 0.969217 | 0.980451 | 1.022480 | 0.712411 |
c2 | -0.065172 | 0.105115 | 0.091123 | 0.346926 |
c3 | 0.027783 | 0.002843 | -0.003307 | 0.028078 |
c4 | -0.000117 | -0.000118 | 0.005490 | -0.000356 |
c5 | -0.003879 | 0.000002 | -0.002025 | 0.003962 |
sixcorr | 2.000000 | NA | 2.000000 | 2.000000 |
The Gaussian, t(\(\Large df = 10\)), Chisq(\(\Large df = 2, ..., 32\)), Beta(\(\Large \alpha = 4,\ \beta = 4\)), Beta(\(\Large \alpha = 4,\ \beta = 2\)), and Gamma(\(\Large \alpha = 10,\ \beta = 10\)) distributions had valid power method pdfs with the original cumulants.
The Logistic(\(\Large 0, 1\)), Triangular(\(\Large 0, 1\)), t(\(\Large df = 7\)), Beta(\(\Large \alpha = 4,\ \beta = 1.5\)), and Beta(\(\Large \alpha = 4,\ \beta = 1.25\)) required relatively small sixth cumulant corrections.
The Laplace(\(\Large 0, 1\)) required the largest correction at 25.14.
We will choose the Logistic(\(\Large 0, 1\)) and Laplace(\(\Large 0, 1\)) distributions for illustration.
First, simulate without the sixth cumulant correction.
seed <- 1234
Rey <- matrix(c(1, 0.4, 0.4, 1), 2, 2)
# Make sure Rey is within feasible correlation bounds
valid <- valid_corr(k_cont = 2, method = "Polynomial",
means = rep(0, 2), vars = rep(1, 2),
skews = H_stcum[1, c("Logistic", "Laplace")],
skurts = H_stcum[2, c("Logistic", "Laplace")],
fifths = H_stcum[3, c("Logistic", "Laplace")],
sixths = H_stcum[4, c("Logistic", "Laplace")],
rho = Rey, seed = seed)
##
## Constants: Distribution 1
##
## Constants: Distribution 2
## All correlations are in feasible range!
A <- rcorrvar(n = 10000, k_cont = 2, method = "Polynomial",
means = rep(0, 2), vars = rep(1, 2),
skews = H_stcum[1, c("Logistic", "Laplace")],
skurts = H_stcum[2, c("Logistic", "Laplace")],
fifths = H_stcum[3, c("Logistic", "Laplace")],
sixths = H_stcum[4, c("Logistic", "Laplace")],
rho = Rey, seed = seed)
##
## Constants: Distribution 1
##
## Constants: Distribution 2
##
## Constants calculation time: 0 minutes
## Intercorrelation calculation time: 0 minutes
## Error loop calculation time: 0 minutes
## Total Simulation time: 0 minutes
Look at the maximum correlation error:
cat(paste("The maximum correlation error is ", round(A$maxerr, 5), ".",
sep = ""))
## The maximum correlation error is 0.00149.
Look at the interquartile-range of correlation errors:
Acorr_error = round(A$correlations - Rey, 6)
cat(paste("The IQR of correlation errors is [",
round(quantile(as.numeric(Acorr_error), 0.25), 5), ", ",
round(quantile(as.numeric(Acorr_error), 0.75), 5), "].", sep = ""))
## The IQR of correlation errors is [-0.00149, 0].
Second, simulate with the sixth cumulant correction.
Six <- list(H_cons["sixcorr", "Logistic"], H_cons["sixcorr", "Laplace"])
# Make sure Rey is within feasible correlation bounds
valid2 <- valid_corr(k_cont = 2, method = "Polynomial",
means = rep(0, 2), vars = rep(1, 2),
skews = H_stcum[1, c("Logistic", "Laplace")],
skurts = H_stcum[2, c("Logistic", "Laplace")],
fifths = H_stcum[3, c("Logistic", "Laplace")],
sixths = H_stcum[4, c("Logistic", "Laplace")],
Six = Six, rho = Rey, seed = seed)
##
## Constants: Distribution 1
##
## Constants: Distribution 2
## All correlations are in feasible range!
B <- rcorrvar(n = 10000, k_cont = 2, method = "Polynomial",
means = rep(0, 2), vars = rep(1, 2),
skews = H_stcum[1, c("Logistic", "Laplace")],
skurts = H_stcum[2, c("Logistic", "Laplace")],
fifths = H_stcum[3, c("Logistic", "Laplace")],
sixths = H_stcum[4, c("Logistic", "Laplace")], Six = Six,
rho = Rey, seed = seed)
##
## Constants: Distribution 1
##
## Constants: Distribution 2
##
## Constants calculation time: 0 minutes
## Intercorrelation calculation time: 0 minutes
## Error loop calculation time: 0 minutes
## Total Simulation time: 0.001 minutes
Look at the maximum correlation error:
cat(paste("The maximum correlation error is ", round(B$maxerr, 5), ".",
sep = ""))
## The maximum correlation error is 0.00101.
Look at the interquartile-range of correlation errors:
Bcorr_error = round(B$correlations - Rey, 6)
cat(paste("The IQR of correlation errors is [",
round(quantile(as.numeric(Bcorr_error), 0.25), 5), ", ",
round(quantile(as.numeric(Bcorr_error), 0.75), 5), "].", sep = ""))
## The IQR of correlation errors is [-0.00101, 0].
In both cases, the correlation errors are small, indicating that the error loop does not need to be used.
Now compare the results numerically.
Target distributions:
as.matrix(round(A$summary_targetcont, 5), nrow = 2, ncol = 7, byrow = TRUE)
Distribution | mean | sd | skew | skurtosis | fifth | sixth | |
---|---|---|---|---|---|---|---|
Logistic | 1 | 0 | 1 | 0 | 1.2 | 0 | 6.85714 |
Laplace | 2 | 0 | 1 | 0 | 3.0 | 0 | 30.00000 |
Without the sixth cumulant correction:
as.matrix(round(A$summary_continuous[, c("Distribution", "mean", "sd", "skew",
"skurtosis", "fifth", "sixth")], 5), nrow = 2,
ncol = 7, byrow = TRUE)
Distribution | mean | sd | skew | skurtosis | fifth | sixth | |
---|---|---|---|---|---|---|---|
X1 | 1 | -0.00043 | 0.99694 | -0.01936 | 1.03693 | 0.13868 | 5.22781 |
X2 | 2 | 0.00141 | 0.99907 | 0.06174 | 2.86625 | 1.36530 | 22.26331 |
A$valid.pdf
## [1] "FALSE" "FALSE"
With the correction:
as.matrix(round(B$summary_continuous[, c("Distribution", "mean", "sd", "skew",
"skurtosis", "fifth", "sixth")], 5), nrow = 2,
ncol = 7, byrow = TRUE)
Distribution | mean | sd | skew | skurtosis | fifth | sixth | |
---|---|---|---|---|---|---|---|
X1 | 1 | -0.00042 | 0.99694 | -0.01820 | 1.02581 | 0.14315 | 6.01048 |
X2 | 2 | 0.00133 | 0.99847 | 0.06998 | 2.68915 | 1.91011 | 27.97101 |
B$valid.pdf
## [1] "TRUE" "TRUE"
The distributions simulated with the sixth cumulant corrections are closer to the target distributions.
Compare the results graphically.
Logistic Distribution:
plot_sim_pdf_theory(sim_y = A$continuous_variables[, 1],
title = "Logistic Pdf", Dist = "Logistic",
params = H_params$Logistic)
plot_sim_pdf_theory(sim_y = B$continuous_variables[, 1],
title = "Corrected Logistic Pdf", Dist = "Logistic",
params = H_params$Logistic)
Laplace Distribution:
plot_sim_pdf_theory(sim_y = A$continuous_variables[, 2],
title = "Laplace Pdf", Dist = "Laplace",
params = H_params$Laplace)
plot_sim_pdf_theory(sim_y = B$continuous_variables[, 2],
title = "Corrected Laplace Pdf", Dist = "Laplace",
params = H_params$Laplace)
Fleishman, A I. 1978. “A Method for Simulating Non-Normal Distributions.” Psychometrika 43: 521–32. doi:10.1007/BF02293811.
Headrick, T C. 2002. “Fast Fifth-Order Polynomial Transforms for Generating Univariate and Multivariate Non-Normal Distributions.” Computational Statistics and Data Analysis 40 (4): 685–711. doi:10.1016/S0167-9473(02)00072-5.
Headrick, T C, and R K Kowalchuk. 2007. “The Power Method Transformation: Its Probability Density Function, Distribution Function, and Its Further Use for Fitting Data.” Journal of Statistical Computation and Simulation 77: 229–49. doi:10.1080/10629360600605065.
Xie, Yihui. 2017. Printr: Automatically Print R Objects to Appropriate Formats According to the ’Knitr’ Output Format. https://CRAN.R-project.org/package=printr.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.