The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
SpaDES
simulationsAs part of a reproducible work flow, caching of various function
calls are a critical component. Down the road, it is likely that an
entire work flow from raw data to publication, decision support, report
writing, presentation building etc., could be built and be reproducible
anywhere, on demand. The reproducible::Cache
function is
built to work with any R function. However, it becomes very powerful in
a SpaDES
context because we can build large, powerful
applications that are transparent and tied to the raw data that may be
many conceptual steps upstream in the workflow. To do this, we
have built several customizations within the SpaDES
package. Important to this is dealing correctly with the
simList
, which is an object that has slot that is an
environment. But more important are the various tools that can be used
at higher levels, i.e., not just for “standard” functions.
SpaDES
Some of the details of the simList
-specific features of
this Cache
function include:
The function converts all elements that have an environment as
part of their attributes into a format that has no unique environment
attribute, using format
if a function, and
as.list
in the case of the simList
environment.
When used within SpaDES
modules, Cache
(capital C) does not require that the argument cachePath
be
specified. If called from inside a SpaDES module, Cache
will use the cachePath
argument from a call to
cachePath(sim)
, taking the sim
from the call
stack. Similarly, if no cachePath
argument is specified,
then it will use getOption("spades.cachePath")
, which will,
by default, be a temporary location with no persistence between R
sessions! To persist between sessions, use
SpaDES::setPaths()
every session.
In a SpaDES
context, there are several levels of caching
that can be used as part of a reproducible workflow. Each level can be
used to a modeller’s advantage; and, all can be – and are often – used
concurrently.
spades
levelAnd entire call to spades
can be cached. This will have
the effect of eliminating any stochasticity in the model as the output
will simply be the cached version of the simList
. This is
likely most useful in situations where reproducibility is more important
than “new” stochasticity (e.g., building decision support
systems, apps, final version of a manuscript).
library(terra)
library(reproducible)
library(SpaDES.core)
mySim <- simInit(
times = list(start = 0.0, end = 3.0),
params = list(
.globals = list(stackName = "landscape", burnStats = "testStats"),
randomLandscapes = list(.plotInitialTime = NA),
fireSpread = list(.plotInitialTime = NA)
),
modules = list("randomLandscapes", "fireSpread"),
paths = list(modulePath = getSampleModules(tempdir()))
)
This functionality can be achieved within a spades
call.
# compare caching ... run once to create cache
system.time({
outSim <- spades(Copy(mySim), cache = TRUE, notOlderThan = Sys.time())
})
## May30 13:32:03 simInit Using setDTthreads(1). To change: 'options(spades.DTthreads = X)'.
## May30 13:32:03 chckpn:init total elpsd: 0.067 secs | 0 checkpoint init 0
## May30 13:32:03 save :init total elpsd: 0.068 secs | 0 save init 0
## May30 13:32:03 prgrss:init total elpsd: 0.07 secs | 0 progress init 0
## May30 13:32:03 load :init total elpsd: 0.072 secs | 0 load init 0
## May30 13:32:03 rndmLn:init total elpsd: 0.074 secs | 0 randomLandscapes init
## May30 13:32:03 rndmLn:init New objects created:
## May30 13:32:03 rndmLn:init <char>
## May30 13:32:03 rndmLn:init 1: landscape
## May30 13:32:03 frSprd:init total elpsd: 0.18 secs | 0 fireSpread init 1
## May30 13:32:03 frSprd:init fireSpread
## May30 13:32:03 frSprd:init New objects created:
## May30 13:32:03 frSprd:init <char>
## May30 13:32:03 frSprd:init 1: testStats
## May30 13:32:03 frSprd:burn total elpsd: 0.2 secs | 1 fireSpread burn 5
## May30 13:32:03 frSprd:stats total elpsd: 0.23 secs | 1 fireSpread stats 5
## May30 13:32:03 frSprd:stats fireSpread
## May30 13:32:03 frSprd:burn total elpsd: 0.23 secs | 2 fireSpread burn 5
## May30 13:32:03 frSprd:stats total elpsd: 0.26 secs | 2 fireSpread stats 5
## May30 13:32:03 frSprd:stats fireSpread
## May30 13:32:03 frSprd:burn total elpsd: 0.27 secs | 3 fireSpread burn 5
## May30 13:32:03 frSprd:stats total elpsd: 0.3 secs | 3 fireSpread stats 5
## May30 13:32:03 frSprd:stats fireSpread
## simList saved in
## SpaDES.core:::savedSimEnv()$.sim
## It will be deleted at next spades() call.
## Saving large object (fn: spades, cacheId: ac0a5289e5ad6e29) to
## Cache: 92.8 Mb
## Done!
## Saved! Cache file: ac0a5289e5ad6e29.rds; fn: spades
## user system elapsed
## 3.853 0.108 3.967
Note that if there were any visualizations (here we turned them off
with .plotInitialTime = NA
above) they will happen the
first time through, but not the cached times.
## Object to retrieve (fn: spades, ac0a5289e5ad6e29.rds) ...
## Loaded! Cached result from previous spades call
## from module
## user system elapsed
## 1.240 0.000 1.243
## [1] "Names: 3 string mismatches"
## [2] "Length mismatch: comparison on first 4 components"
## [3] "Component 2: Modes: numeric, NULL"
## [4] "Component 2: Lengths: 4, 0"
## [5] "Component 2: target is numeric, current is NULL"
## [6] "Component 3: target is NULL, current is PackedSpatRaster"
## [7] "Component 4: Modes: S4, numeric"
## [8] "Component 4: Lengths: 1, 3"
## [9] "Component 4: Attributes: < Modes: list, NULL >"
## [10] "Component 4: Attributes: < Lengths: 5, 0 >"
## [11] "Component 4: Attributes: < names for target but not for current >"
## [12] "Component 4: Attributes: < current is not list-like >"
If the parameter .useCache
in the module’s metadata is
set to TRUE
, then every event in the module will
be cached. That means that every time that module is called from within
a spades()
call, Cache
will be called. Only
the objects inside the simList
that correspond to the
inputObjects
or the outputObjects
from the
module metadata will be assessed for caching. For general use,
module-level caching would be mostly useful for modules that have no
stochasticity, such as data-preparation modules, GIS modules etc.
In this example, we will use the cache on the
randomLandscapes
module. This means that each subsequent
call to spades will result in identical outputs from the
randomLandscapes
module (only!). This would be useful when
only one random landscape is needed simply for trying something out, or
putting into production code (e.g., publication, decision
support, etc.).
# Module-level
params(mySim)$randomLandscapes$.useCache <- TRUE
system.time({
randomSim <- spades(Copy(mySim), .plotInitialTime = NA,
notOlderThan = Sys.time(), debug = TRUE)
})
## May30 13:32:08 simInit Using setDTthreads(1). To change: 'options(spades.DTthreads = X)'.
## May30 13:32:08 chckpn:init eventTime moduleName eventType eventPriority
## May30 13:32:08 chckpn:init 0 checkpoint init 0
## May30 13:32:08 save :init 0 save init 0
## May30 13:32:08 prgrss:init 0 progress init 0
## May30 13:32:08 load :init 0 load init 0
## May30 13:32:08 rndmLn:init 0 randomLandscapes init 1
## May30 13:32:10 rndmLn:init Saving large object (fn: doEvent.randomLandscapes, cacheId:
## May30 13:32:10 rndmLn:init 7a1e1fac75a91549) to Cache: 92.6 Mb
## Done!
##
## May30 13:32:12 rndmLn:init Saved! Cache file: 7a1e1fac75a91549.rds; fn: doEvent.randomLandscapes
## May30 13:32:12 rndmLn:init New objects created:
## May30 13:32:12 rndmLn:init <char>
## May30 13:32:12 rndmLn:init 1: landscape
## May30 13:32:12 frSprd:init 0 fireSpread init 1
## May30 13:32:12 frSprd:init fireSpread
## May30 13:32:12 frSprd:init New objects created:
## May30 13:32:12 frSprd:init <char>
## May30 13:32:12 frSprd:init 1: testStats
## May30 13:32:12 frSprd:burn 1 fireSpread burn 5
## May30 13:32:12 frSprd:stats 1 fireSpread stats 5
## May30 13:32:12 frSprd:stats fireSpread
## May30 13:32:12 frSprd:burn 2 fireSpread burn 5
## May30 13:32:12 frSprd:stats 2 fireSpread stats 5
## May30 13:32:12 frSprd:stats fireSpread
## May30 13:32:12 frSprd:burn 3 fireSpread burn 5
## May30 13:32:12 frSprd:stats 3 fireSpread stats 5
## May30 13:32:12 frSprd:stats fireSpread
## simList saved in
## SpaDES.core:::savedSimEnv()$.sim
## It will be deleted at next spades() call.
## user system elapsed
## 3.402 0.068 3.475
# faster the second time
system.time({
randomSimCached <- spades(Copy(mySim), .plotInitialTime = NA, debug = TRUE)
})
## May30 13:32:12 simInit Using setDTthreads(1). To change: 'options(spades.DTthreads = X)'.
## May30 13:32:12 chckpn:init eventTime moduleName eventType eventPriority
## May30 13:32:12 chckpn:init 0 checkpoint init 0
## May30 13:32:12 save :init 0 save init 0
## May30 13:32:12 prgrss:init 0 progress init 0
## May30 13:32:12 load :init 0 load init 0
## May30 13:32:12 rndmLn:init 0 randomLandscapes init 1
## May30 13:32:12 rndmLn:init Object to retrieve (fn: doEvent.randomLandscapes,
## May30 13:32:12 rndmLn:init 7a1e1fac75a91549.rds) ...
## May30 13:32:13 rndmLn:init Loaded! Cached result from previous doEvent.randomLandscapes call
## May30 13:32:13 rndmLn:init for init event in randomLandscapes module
## May30 13:32:13 rndmLn:init randomLandscapes
## May30 13:32:13 rndmLn:init New objects created:
## May30 13:32:13 rndmLn:init <char>
## May30 13:32:13 rndmLn:init 1: landscape
## May30 13:32:13 frSprd:init 0 fireSpread init 1
## May30 13:32:13 frSprd:init fireSpread
## May30 13:32:13 frSprd:init New objects created:
## May30 13:32:13 frSprd:init <char>
## May30 13:32:13 frSprd:init 1: testStats
## May30 13:32:13 frSprd:burn 1 fireSpread burn 5
## May30 13:32:13 frSprd:stats 1 fireSpread stats 5
## May30 13:32:13 frSprd:stats fireSpread
## May30 13:32:13 frSprd:burn 2 fireSpread burn 5
## May30 13:32:13 frSprd:stats 2 fireSpread stats 5
## May30 13:32:13 frSprd:stats fireSpread
## May30 13:32:13 frSprd:burn 3 fireSpread burn 5
## May30 13:32:13 frSprd:stats 3 fireSpread stats 5
## May30 13:32:13 frSprd:stats fireSpread
## simList saved in
## SpaDES.core:::savedSimEnv()$.sim
## It will be deleted at next spades() call.
## user system elapsed
## 1.155 0.008 1.166
Test that only layers produced in randomLandscapes
are
identical, not fireSpread
.
layers <- list("DEM", "forestAge", "habitatQuality", "percentPine", "Fires")
same <- lapply(layers, function(l) {
identical(randomSim$landscape[[l]], randomSimCached$landscape[[l]])
})
names(same) <- layers
print(same) # Fires is not same because all non-init events in fireSpread are not cached
## $DEM
## [1] TRUE
##
## $forestAge
## [1] TRUE
##
## $habitatQuality
## [1] TRUE
##
## $percentPine
## [1] TRUE
##
## $Fires
## [1] FALSE
If the parameter .useCache
in the module’s metadata is
set to a character or character vector, then that or those
event(s), identified by their name, will be cached. That means that
every time the event is called from within a spades
call,
Cache
will be called. Only the objects inside the
simList
that correspond to the inputObjects
or
the outputObjects
as defined in the module metadata will be
assessed for caching inputs or outputs, respectively. The fact that all
and only the named inputObjects
and
outputObjects
are cached and returned may be inefficient
(i.e., it may cache more objects than are necessary) for
individual events.
Similar to module-level caching, event-level caching would be mostly
useful for events that have no stochasticity, such as data-preparation
events, GIS events etc. Here, we don’t change the module-level caching
for randomLandscapes
, but we add to it a cache for only the
“init” event for fireSpread
.
params(mySim)$fireSpread$.useCache <- "init"
system.time({
randomSim <- spades(Copy(mySim), .plotInitialTime = NA,
notOlderThan = Sys.time(), debug = TRUE)
})
## May30 13:32:14 simInit Using setDTthreads(1). To change: 'options(spades.DTthreads = X)'.
## May30 13:32:14 chckpn:init eventTime moduleName eventType eventPriority
## May30 13:32:14 chckpn:init 0 checkpoint init 0
## May30 13:32:14 save :init 0 save init 0
## May30 13:32:14 prgrss:init 0 progress init 0
## May30 13:32:14 load :init 0 load init 0
## May30 13:32:14 rndmLn:init 0 randomLandscapes init 1
## May30 13:32:15 rndmLn:init Saving large object (fn: doEvent.randomLandscapes, cacheId:
## May30 13:32:15 rndmLn:init 7a1e1fac75a91549) to Cache: 92.6 Mb
## Done!
##
## May30 13:32:17 rndmLn:init Saved! Cache file: 7a1e1fac75a91549.rds; fn: doEvent.randomLandscapes
## May30 13:32:17 rndmLn:init New objects created:
## May30 13:32:17 rndmLn:init <char>
## May30 13:32:17 rndmLn:init 1: landscape
## May30 13:32:17 frSprd:init 0 fireSpread init 1
## May30 13:32:19 frSprd:init Saving large object (fn: doEvent.fireSpread, cacheId:
## May30 13:32:19 frSprd:init 970325f6b148bd8a) to Cache: 92.7 Mb
## Done!
##
## May30 13:32:20 frSprd:init Saved! Cache file: 970325f6b148bd8a.rds; fn: doEvent.fireSpread
## May30 13:32:20 frSprd:init New objects created:
## May30 13:32:20 frSprd:init <char>
## May30 13:32:20 frSprd:init 1: testStats
## May30 13:32:20 frSprd:burn 1 fireSpread burn 5
## May30 13:32:20 frSprd:stats 1 fireSpread stats 5
## May30 13:32:20 frSprd:stats fireSpread
## May30 13:32:20 frSprd:burn 2 fireSpread burn 5
## May30 13:32:20 frSprd:stats 2 fireSpread stats 5
## May30 13:32:20 frSprd:stats fireSpread
## May30 13:32:20 frSprd:burn 3 fireSpread burn 5
## May30 13:32:21 frSprd:stats 3 fireSpread stats 5
## May30 13:32:21 frSprd:stats fireSpread
## simList saved in
## SpaDES.core:::savedSimEnv()$.sim
## It will be deleted at next spades() call.
## user system elapsed
## 6.797 0.036 6.842
# faster the second time
system.time({
randomSimCached <- spades(Copy(mySim), .plotInitialTime = NA, debug = TRUE)
})
## May30 13:32:21 simInit Using setDTthreads(1). To change: 'options(spades.DTthreads = X)'.
## May30 13:32:21 chckpn:init eventTime moduleName eventType eventPriority
## May30 13:32:21 chckpn:init 0 checkpoint init 0
## May30 13:32:21 save :init 0 save init 0
## May30 13:32:21 prgrss:init 0 progress init 0
## May30 13:32:21 load :init 0 load init 0
## May30 13:32:21 rndmLn:init 0 randomLandscapes init 1
## May30 13:32:21 rndmLn:init Object to retrieve (fn: doEvent.randomLandscapes,
## May30 13:32:21 rndmLn:init 7a1e1fac75a91549.rds) ...
## May30 13:32:22 rndmLn:init Loaded! Cached result from previous doEvent.randomLandscapes call
## May30 13:32:22 rndmLn:init for init event in randomLandscapes module
## May30 13:32:22 rndmLn:init randomLandscapes
## May30 13:32:22 rndmLn:init New objects created:
## May30 13:32:22 rndmLn:init <char>
## May30 13:32:22 rndmLn:init 1: landscape
## May30 13:32:22 frSprd:init 0 fireSpread init 1
## May30 13:32:22 frSprd:init Object to retrieve (fn: doEvent.fireSpread, 970325f6b148bd8a.rds) ...
## May30 13:32:23 frSprd:init Loaded! Cached result from previous doEvent.fireSpread call
## May30 13:32:23 frSprd:init for init event in fireSpread module
## May30 13:32:23 frSprd:init fireSpread
## May30 13:32:23 frSprd:init New objects created:
## May30 13:32:23 frSprd:init <char>
## May30 13:32:23 frSprd:init 1: testStats
## May30 13:32:23 frSprd:burn 1 fireSpread burn 5
## May30 13:32:23 frSprd:stats 1 fireSpread stats 5
## May30 13:32:23 frSprd:stats fireSpread
## May30 13:32:23 frSprd:burn 2 fireSpread burn 5
## May30 13:32:23 frSprd:stats 2 fireSpread stats 5
## May30 13:32:23 frSprd:stats fireSpread
## May30 13:32:23 frSprd:burn 3 fireSpread burn 5
## May30 13:32:23 frSprd:stats 3 fireSpread stats 5
## May30 13:32:23 frSprd:stats fireSpread
## simList saved in
## SpaDES.core:::savedSimEnv()$.sim
## It will be deleted at next spades() call.
## user system elapsed
## 2.071 0.000 2.077
Any function can be cached using:
Cache(FUN = functionName, ...)
.
This will be a slight change to a function call, such as:
projectRaster(raster, crs = crs(newRaster))
to
Cache(projectRaster, raster, crs = crs(newRaster))
.
ras <- terra::rast(terra::ext(0, 1e3, 0, 1e3), res = 1, vals = 1)
system.time({
map <- Cache(SpaDES.tools::neutralLandscapeMap(ras),
cachePath = cachePath(mySim),
userTags = "neutralLandscapeMap",
notOlderThan = Sys.time())
})
## Warning: In (SpaDES.tools::neutralLandscapeMap(ras))(): nlm_mpd changes the
## dimensions of the RasterLayer if even ncols/nrows are choosen.
## Saving large object (fn: SpaDES.tools::neutralLandscapeMap, cacheId:
## 94d035af43fc613d) to Cache: 16.9 Mb
## Done!
## Saved! Cache file: 94d035af43fc613d.rds; fn:
## SpaDES.tools::neutralLandscapeMap
## user system elapsed
## 1.952 0.017 1.972
# faster the second time
system.time({
mapCached <- Cache(SpaDES.tools::neutralLandscapeMap(ras),
cachePath = cachePath(mySim),
userTags = "neutralLandscapeMap")
})
## Object to retrieve (fn: SpaDES.tools::neutralLandscapeMap,
## 94d035af43fc613d.rds) ...
## Loaded! Cached result from previous
## SpaDES.tools::neutralLandscapeMap call
## user system elapsed
## 0.654 0.008 0.665
## NOTE: can't use all.equal on SpatRaster (they are pointers); use compareGeom()
all.equal(map[], mapCached[])
## [1] TRUE
Since the cache is simply a DBI
database table, all
DBI
functions will work as is. In addition, there are
several helpers in the reproducible
package, including
showCache
, keepCache
and
clearCache
, and the more advanced createCache
,
loadFromCache
, rmFromCache
, and
saveToCache
that may be useful. Also, one can access cached
items manually (rather than simply rerunning the same Cache
function again).
## Cache size:
## Total (including Rasters): 4.2 Mb
## Selected objects (not including Rasters): 4.2 Mb
## get the RasterLayer that was produced with neutralLandscapeMap()
map <- loadFromCache(cacheId = cacheDB$cacheId, cachePath = cachePath(mySim))
## Loaded! Cached result from previous call
In general, we feel that a liberal use of Cache
will
make a reusable and reproducible work flow. shiny
apps can
be made, taking advantage of Cache
. Indeed, much of the
difficulty in managing data sets and saving them for future use, can be
accommodated by caching.
simInit() --> many .inputObjects calls
spades() call --> many module calls --> many event calls --> many function calls
Lets say we start to introduce caching to this structure. We start
from the “inner” most functions that we could imaging Caching would be
useful. Lets say there are some GIS operations, like
raster::projectRaster
, which operates on an input
shapefile. We can Cache the projectRaster
call to make this
much faster, since it will always be the same result for a given input
raster.
If we look back at our structure above, we see that we still have
LOTS of places that are not Cached. That means that the
spades()
call will still spawn many module calls, and many
event calls, just to get to the one Cache(projectRaster)
call which is cached. This function will likely be called many times.
This is good, but Cache
does take some
time. So, even if Cache(projectRaster)
takes only
0.02 seconds, calling it hundreds of times means maybe 4 seconds. If we
are doing this for many functions, then this will be too slow for some
purposes.
We can start putting Cache
all up the sequence of calls.
Unfortunately, the way we use Cache at each of these levels is a bit
different, so we need a slightly different approach for each.
spades
callspades(cache = TRUE)
This will cache the spades
call, causing
stochasticity/randomness to be frozen.
Pass .useCache = TRUE
as a parameter to the module,
during the simInit
Some modules are inherently non-random, such as GIS modules, or parameter fitting statistical modules. We expect these to be identical results each time, so we can safely cache the entire module.
parameters = list(
FireModule = list(.useCache = TRUE)
)
mySim <- simInit(..., params = parameters)
mySimOut <- spades(mySim)
The messaging should indicate the caching is happening on every event in that module.
Note: This option REQUIRES that the metadata in inputs
and outputs be exactly correct, i.e., all inputObjects
and
outputObjects
must be correctly identified and listed in
the defineModule
metadata
If the module is cached, and there are errors when it is
run, it almost is guaranteed to be a problem with the
inputObjects
and outputObjects
incorrectly
specified.
Cache(<functionName>, <other arguments>)
This will allow fine scale control of individual function calls.
Once nested Caching is used all the way up to the
experiment
(see SpaDES.experiment
package)
level and even further up (e.g., if there is a shiny
module), then even very complex models can be put into a complete
workflow.
The current vision for SpaDES
is that it will allow this
type of “data to decisions” complete workflow that allows for deep,
robust models, across disciplines, with easily accessible front ends,
that are quick and responsive to users, yet can handle data changes,
module changes, etc.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.