The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This script shows a toy example of usage of SparseFunClust (without alignment).
library(SparseFunClust)
set.seed(24032023)
<- 50
n <- seq(0,1,len=500)
x <- generate.data.FV17(n, x)
out <- out$data
data <- out$true.partition
trueClust matplot(x, t(data), type='l', col=trueClust,
xlab = 'x', ylab = 'data', main = 'Simulated data')
<- 2 # run with 2 groups only
K <- 'kmea' # version with K-means clustering
method <- FALSE # don't perform tuning of the sparsity parameter (faster)
tuning.m <- SparseFunClust(data, x, K = K, do.alignment = FALSE,
result clust.method = method, tuning.m = tuning.m)
table(trueClust,result$labels)
##
## trueClust 1 2
## 1 50 0
## 2 10 40
cer(trueClust,result$labels)
## [1] 0.1818182
matplot(x,t(data),type='l',lty=1,col=result$labels+1,ylab='',
main='clustering results')
lines(x,colMeans(data[which(result$labels==1),]),lwd=2)
lines(x,colMeans(data[which(result$labels==2),]),lwd=2)
plot(x,result$w,type='l',lty=1,lwd=2,ylab='',
main='estimated weighting function')
abline(v=0.5)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.