The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: R Codes and Datasets for Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup
Version: 0.3.0
Maintainer: Muhammad Yaseen <myaseen208@gmail.com>
Description: R Codes and Datasets for Stroup, W. W. (2012). Generalized Linear Mixed Models Modern Concepts, Methods and Applications, CRC Press.
URL: https://myaseen208.com/StroupGLMM/ https://CRAN.R-project.org/package=StroupGLMM
BugReports: https://github.com/myaseen208/StroupGLMM/issues
Depends: R (≥ 3.1)
Imports: aod, broom.mixed, car, dplyr, emmeans, ggplot2, lattice, lmerTest, magrittr, MASS, mutoss, nlme, parameters, phia, scatterplot3d, splines, stats, survey
License: GPL-3
LazyData: true
RoxygenNote: 7.3.2
Encoding: UTF-8
Note: 1. School of Mathematical & Statistical Sciences, Clemson University, Clemson, South Carolina, USA 2. Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad, Pakistan
NeedsCompilation: no
Packaged: 2024-10-01 16:09:18 UTC; myaseen208
Author: Muhammad Yaseen ORCID iD [aut, cre, cph], Adeela Munawar [aut, ctb], Walter W. Stroup [aut, ctb], Kent M. Eskridge [aut, ctb]
Repository: CRAN
Date/Publication: 2024-10-01 22:10:07 UTC

Data for Example 2.B.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-54)

Description

Exam2.B.2 is used to visualize the effect of glm model statement with binomial data with logit and probit links.

Usage

data(DataExam2.B.2)

Format

A data.frame with 11 rows and 3 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam2.B.2

Examples

data(DataExam2.B.2)

Data for Example 2.B.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-55)

Description

Exam2.B.3 is used to illustrate one way treatment design with Gaussian observations.

Usage

data(DataExam2.B.3)

Format

A data.frame with 6 rows and 2 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam2.B.3

Examples

data(DataExam2.B.3)

Data for Example 2.B.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-54)

Description

Exam2.B.4 is used to illustrate one way treatment design with Binomial observations.

Usage

data(DataExam2.B.4)

Format

A data.frame with 6 rows and 4 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam2.B.4

Examples

data(DataExam2.B.4)

Data for Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-60)

Description

Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.

Usage

data(DataExam2.B.7)

Format

A data.frame with 16 rows and 4 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam2.B.7

Examples

data(DataExam2.B.7)

Data for Example 3.1 and Example 3.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet3.1 is used for linear and generalized linear models

Usage

data(DataSet3.1)

Format

A data.frame with 20 rows and 5 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam3.2

Examples

data(DataSet3.1)

DataSt3.2 for Example 3.3, Example 3.4, Example3.6, Example3.8 and Example 3.9 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet3.2 Multi-Location, 4 Treatment Randomized Block

Usage

data(DataSet3.2)

Format

A data.frame with 32 rows and 10 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam3.3 Exam3.9

Examples

data(DataSet3.2)

Data for Example3.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Exam1.2 is used to see types of model effects by plotting regression data

Usage

data(DataSet3.3)

Format

A data.frame with 36 rows and 6 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

Examples

data(DataSet3.3)

Data for Example 4.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet4.1 comes from Cochran and Cox (1957) Experimental Design

Usage

data(DataSet4.1)

Format

A data.frame with 60 rows and 3 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

  2. Cochran, W. G., & Cox, G. M. (1957). Experimental designs.

See Also

Exam4.1

Examples

data(DataSet4.1)

Data for Example 5.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet5.1 is used for polynomial multiple regression

Usage

data(DataSet5.1)

Format

A data.frame with 14 rows and 3 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam5.1

Examples

data(DataSet5.1)

Data for Example 5.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet5.2 is used for three factor orthogonal main effects only design with sequential fitting of predictors

Usage

data(DataSet5.2)

Format

A data.frame with 9 rows and 4 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam5.2

Examples

data(DataSet5.2)

Data for Example 7.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.1)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam7.1

Examples

data(DataSet7.1)

Data for Example 7.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.2)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam7.2

Examples

data(DataSet7.2)

Data for Example 7.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.3)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam7.3

Examples

data(DataSet7.3)

Data for Example 7.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.4)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

Examples

data(DataSet7.4)

Data for Example 7.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.4rsm)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

Examples

data(DataSet7.4rsm)

Data for Example 7.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.6)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam7.6.2.1

Examples

data(DataSet7.6)

Data for Example 7.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Data for Example 7.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Usage

data(DataSet7.7)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

Examples

data(DataSet7.7)

Data for Example 8.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet8.1 is used for Nested factorial structure

Usage

data(DataSet8.1)

Format

A data.frame with 30 rows and 4 variables.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam8.1

Examples

data(DataSet8.1)

Data for Example 8.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet8.2 is used for Incomplete strip-plot ( 3 cross 3 factorial).

Usage

data(DataSet8.2)

Format

A data.frame with 36 rows and 6 variables.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam8.2

Examples

data(DataSet8.2)

Data for Example 8.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet8.3 is used for Response surface design with incomplete blocking

Usage

data(DataSet8.3)

Format

A data.frame with 28 rows and 4 variables.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam8.3

Examples

data(DataSet8.3)

Data for Example 8.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet8.4 is used for Multifactor treatment and Multilevel design structures

Usage

data(DataSet8.4)

Format

A data.frame with 36 rows and 6 variables.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam8.4

Examples

data(DataSet8.4)

Data for Example 9.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet9.1 is used for One-way random effects only model

Usage

data(DataSet9.1)

Format

A data.frame with 24 rows and 2 variables.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam9.1

Examples

data(DataSet9.1)

Data for Example 9.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet9.2 is used for Two way random effects nested model

Usage

data(DataSet9.2)

Format

A data.frame with 28 rows and 3 variables with levels of b nested within levels of.

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam9.2

Examples

data(DataSet9.2)

Data for Example 9.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

DataSet9.4 is used for Relationship between BLUP and Fixed Effect Estimators

Usage

data(DataSet9.4)

Format

A data.frame with 32 rows and 3 variables

Details

Author(s)

Muhammad Yaseen (myaseen208@gmail.com) Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear Mixed Models: Modern Concepts, Methods and Applications. CRC press.

See Also

Exam9.4

Examples

data(DataSet9.4)

Example1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-5)

Description

Exam1.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.1

Examples

#-------------------------------------------------------------
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-------------------------------------------------------------
data(Table1.1)
Exam1.1.lm1 <- lm(formula =  y/Nx ~ x, data = Table1.1)
summary(Exam1.1.lm1 )
library(parameters)
model_parameters(Exam1.1.lm1)

#-------------------------------------------------------------
## GLM fitting with logit link (family=binomial)
#-------------------------------------------------------------
Exam1.1.glm1 <-
        glm(
              formula = y/Nx ~ x
            , family  =  binomial(link = "logit")
            , data    = Table1.1
            )
## this glm() function gives warning message of non-integer success
summary(Exam1.1.glm1)
model_parameters(Exam1.1.glm1)

#-------------------------------------------------------------
## GLM fitting with logit link (family = Quasibinomial)
#-------------------------------------------------------------
Exam1.1.glm2 <-
      glm(
           formula = y/Nx~x
         , family =  quasibinomial(link = "logit")
         , data   =  Table1.1
         )
## problem of "warning message of non-integer success" is overome by using quasibinomial family
summary(Exam1.1.glm2)
model_parameters(Exam1.1.glm2)

#-------------------------------------------------------------
## GLM fitting with survey package(produces same result as using quasi binomial family in glm)
#-------------------------------------------------------------
library(survey)
design   <- svydesign(ids =  ~1, data =  Table1.1)

Exam1.1.svyglm  <-
        svyglm(
                 formula  =  y/Nx~x
               , design   =  design
               , family   =  quasibinomial(link = "logit")
               )
summary(Exam1.1.svyglm)
model_parameters(Exam1.1.svyglm)

#-------------------------------------------------------------
## Figure 1.1
#-------------------------------------------------------------
Newdata     <-
  data.frame(
    Table1.1
    , LM       =  Exam1.1.lm1$fitted.values
    , GLM      =  Exam1.1.glm1$fitted.values
    , QB       =  Exam1.1.glm2$fitted.values
    , SM       =  Exam1.1.svyglm$fitted.values
  )
#-------------------------------------------------------------
## One Method to plot  Figure1.1
#-------------------------------------------------------------
library(ggplot2)

Figure1.1   <-
  ggplot(
      data     = Newdata
    , mapping  = aes(x = x, y = y/Nx)
  )     +
  geom_point (
    mapping  = aes(colour = "black")
  )  +
  geom_point (
    data     = Newdata
    , mapping  = aes(x = x, y = LM, colour = "blue"), shape = 2
  )  +
  geom_line(
    data     = Newdata
    , mapping  = aes(x = x, y = LM, colour = "blue")
  )   +
  geom_point (
    data     = Newdata
    , mapping  = aes(x = x, y = GLM, colour ="red"), shape = 3
  ) +
  geom_smooth (
    data     = Newdata
    , mapping  = aes(x = x, y = GLM, colour = "red")
    , stat     = "smooth"
  ) +
  theme_bw()    +
  scale_colour_manual (
    values = c("black", "blue", "red"),
    labels = c("observed", "LM", "GLM")
  )  +
  guides (
    colour   = guide_legend(title = "Plot")
  ) +
  labs (
    title     = "Linear Model vs Logistic Model"
  ) +
  labs (
    y         = "p"
  )
print(Figure1.1)

#-------------------------------------------------------------
## Another way to plot Figure 1.1
#-------------------------------------------------------------
newdata   <-
  data.frame(
    P     =  c(
                Table1.1$y/Table1.1$Nx
              , Exam1.1.lm1$fitted.values
              , Exam1.1.glm1$fitted.values
               )
    , X     =  rep(Table1.1$x, 3)
    , group =  rep(c('Obs','LM','GLM'), each = length(Table1.1$x))
  )

Figure1.1      <-
  ggplot(
      data    = newdata
    , mapping = aes(x = X , y = P)
  )    +
  geom_point(
    mapping = aes(x = X , y = P, colour = group , shape=group)
  ) +
  geom_smooth(
    data    = subset(x = newdata, group == "LM")
    , mapping = aes(x=X,y=P)
    , col     = "green"
  ) +
  geom_smooth(
    data    = subset(x = newdata, group=="GLM")
    , mapping = aes(x = X , y = P)
    , col     = "red"
  ) +
  theme_bw() +
  labs(
    title   = "Linear Model vs Logistic Model"
  )
print(Figure1.1)

#-------------------------------------------------------------
## Correlation among p and fitted values using Gaussian link
#-------------------------------------------------------------
(lmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.lm1$fitted.values))

#-------------------------------------------------------------
## Correlation among p and fitted values using quasi binomial link
#-------------------------------------------------------------
(glmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.glm1$fitted.values))

Example1.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-9)

Description

Exam1.2 is used to see types of model effects by plotting regression data

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

Examples


#-------------------------------------------------------------
## Plot of multi-batch regression data discussed in Article 1.3
#-------------------------------------------------------------
data(Table1.1)

Table1.2$Batch <- factor(x  = Table1.2$Batch)

library(ggplot2)
Plot  <-
 ggplot(data = Table1.2, mapping = aes(y = Y, x = X, colour = Batch, shape = Batch))      +
 geom_point() +
 geom_smooth(method = "lm", fill =  NA) +
 labs(title   = "Plot of Multi Batch Regression data") +
 theme_bw()
Plot

Example 2.B.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-53)

Description

Exam2.B.1 is used to visualize the effect of lm model statement with Gaussian data and their design matrix

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.1

Examples

#-----------------------------------------------------------------------------------
## Linear Model  discussed in Example 2.B.1 using simple regression data of Table1.1
#-----------------------------------------------------------------------------------

data(Table1.1)

Exam2.B.1.lm1 <- lm(formula = y~x, data = Table1.1)
summary(Exam2.B.1.lm1)
library(parameters)
model_parameters(Exam2.B.1.lm1)

DesignMatrix.lm1 <- model.matrix (object = Exam2.B.1.lm1)
DesignMatrix.lm1


Example 2.B.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-54)

Description

Exam2.B.2 is used to visualize the effect of glm model statement with binomial data with logit and probit links.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataExam2.B.2

Examples

#-----------------------------------------------------------------------------------
## probitit Model  discussed in Example 2.B.2 using DataExam2.B.2
## Default link is logit
## using fmaily = binomial gives warning message of no-integer successes
#-----------------------------------------------------------------------------------
data(DataExam2.B.2)
Exam2.B.2glm <- glm(formula = y/n~x, family = quasibinomial(link = "probit"), data =  DataExam2.B.2)
summary(Exam2.B.2glm)
library(parameters)
model_parameters(Exam2.B.2glm)

Example 2.B.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-55)

Description

Exam2.B.3 is used to illustrate one way treatment design with Gaussian observations.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataExam2.B.3

Examples

#-----------------------------------------------------------------------------------
## Means Model  discussed in Example 2.B.3 using DataExam2.B.3
#-----------------------------------------------------------------------------------
Exam2.B.3.lm1 <- lm(formula = y ~ trt, data = DataExam2.B.3)
summary(Exam2.B.3.lm1)

#-----------------------------------------------------------------------------------
## Effectss Model  discussed in Example 2.B.3 using DataExam2.B.3
#-----------------------------------------------------------------------------------
Exam2.B.3.lm2 <- lm(formula = y ~ 0 + trt, data = DataExam2.B.3)
summary(Exam2.B.3.lm2)
library(parameters)
model_parameters(Exam2.B.3.lm2)

Example 2.B.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-56)

Description

Exam2.B.4 is used to illustrate one way treatment design with Binomial observations.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataExam2.B.4

Examples

#-----------------------------------------------------------------------------------
## logit Model  discussed in Example 2.B.2 using DataExam2.B.4
## Default link is logit
## using fmaily=binomial gives warning message of no-integer successes
#-----------------------------------------------------------------------------------
data(DataExam2.B.4)
DataExam2.B.4$trt <- factor(x =  DataExam2.B.4$trt)
Exam2.B.4glm <-
                glm(
                      formula = Yij/Nij ~ trt
                    , family  =  quasibinomial(link = "probit")
                    , data    = DataExam2.B.4
                    )
summary(Exam2.B.4glm)
library(parameters)
model_parameters(Exam2.B.4glm)

Example 2.B.5 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-57)

Description

Exam2.B.5 is related to multi batch regression data assuming different forms of linear models.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

Examples

#-----------------------------------------------------------------------------------
## Nested Model with no intercept
#-----------------------------------------------------------------------------------

data(Table1.2)
Table1.2$Batch <- factor(x = Table1.2$Batch)

Exam2.B.5.lm1 <- lm(formula = Y ~ 0 + Batch + Batch/X, data = Table1.2)
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.5.lm1)
DesignMatrix.lm1

#-----------------------------------------------------------------------------------
## Interaction Model with intercept
#-----------------------------------------------------------------------------------
Exam2.B.5.lm2 <-lm(formula = Y ~ Batch + X + Batch*X, data  = Table1.2)
DesignMatrix.lm2 <-   model.matrix (object = Exam2.B.5.lm2)
DesignMatrix.lm2

#-----------------------------------------------------------------------------------
## Interaction Model with no intercept
#-----------------------------------------------------------------------------------
Exam2.B.5.lm3 <- lm(formula = Y ~ 0 + Batch + Batch*X, data = Table1.2)
DesignMatrix.lm3 <-   model.matrix(object = Exam2.B.5.lm3)
DesignMatrix.lm3

#-----------------------------------------------------------------------------------
## Interaction Model with intercept  but omitting X term as main effect
#-----------------------------------------------------------------------------------
Exam2.B.5.lm4 <- lm(formula = Y ~ Batch + Batch*X, data = Table1.2)
DesignMatrix.lm4 <-   model.matrix(object = Exam2.B.5.lm4)
DesignMatrix.lm4


Example 2.B.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-58)

Description

Exam2.B.6 is related to multi batch regression data assuming different forms of linear models keeping batch effect random.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

Examples

#-----------------------------------------------------------------------------------
## Nested Model with no intercept
#-----------------------------------------------------------------------------------

data(Table1.2)
Table1.2$Batch <- factor(x = Table1.2$Batch)
library(nlme)
Exam2.B.6fm1 <- lme(
      fixed       = Y ~ X
    , data        = Table1.2
    , random      = list(Batch = pdDiag(~1), X = pdDiag(~1))
    , method      = c("REML", "ML")[1]
    )
Exam2.B.6fm1
library(broom.mixed)
tidy(Exam2.B.6fm1)

Example 2.B.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-60)

Description

Exam2.B.7 is related to multi batch regression data assuming different forms of linear models with factorial experiment.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataExam2.B.7

Examples

#-----------------------------------------------------------------------------------
## Classical main effects and Interaction Model
#-----------------------------------------------------------------------------------
data(DataExam2.B.7)
DataExam2.B.7$a <- factor(x = DataExam2.B.7$a)
DataExam2.B.7$b <- factor(x = DataExam2.B.7$b)
Exam2.B.7.lm1 <- lm(formula = y~ a + b + a*b, data = DataExam2.B.7)
#-----------------------------------------------------------------------------------
## One way treatment effects model
#-----------------------------------------------------------------------------------
DesignMatrix.lm1 <- model.matrix (object = Exam2.B.7.lm1)
DesignMatrix2.B.7.2 <- DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("a2","b")]

lmfit2 <- lm.fit(x = DesignMatrix2.B.7.2, y = DataExam2.B.7$y)
Coefficientslmfit2 <- coef( object = lmfit2)
Coefficientslmfit2

#-----------------------------------------------------------------------------------
## One way treatment effects model without intercept
#-----------------------------------------------------------------------------------
DesignMatrix2.B.7.3    <-
  as.matrix(DesignMatrix.lm1[,!colnames(DesignMatrix.lm1) %in% c("(Intercept)","a2","b")])

lmfit3 <- lm.fit(x = DesignMatrix2.B.7.3, y = DataExam2.B.7$y)
Coefficientslmfit3 <- coef( object = lmfit3)
Coefficientslmfit3

#-----------------------------------------------------------------------------------
## Nested Model (both models give the same result)
#-----------------------------------------------------------------------------------
Exam2.B.7.lm4 <- lm(formula = y~ a + a/b, data  = DataExam2.B.7)
summary(Exam2.B.7.lm4)

Exam2.B.7.lm4 <- lm(formula = y~ a + a*b, data = DataExam2.B.7)
summary(Exam2.B.7.lm4)


Example 3.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-73)

Description

Exam3.2 used binomial data, two treatment samples

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.1

Examples

#-------------------------------------------------------------
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-------------------------------------------------------------
data(DataSet3.1)
DataSet3.1$trt <- factor(x =  DataSet3.1$trt)
Exam3.2.glm <- glm(formula =  F/N~trt, family =  quasibinomial(link = "logit"), data =  DataSet3.1)
summary(Exam3.2.glm)
library(parameters)
model_parameters(Exam3.2.glm)

#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
library(emmeans)
emmeans(object  = Exam3.2.glm, specs   = "trt")
emmeans(object  = Exam3.2.glm, specs   = "trt", type = "response")

#---------------------------------------------------
## Over all mean
#---------------------------------------------------
library(phia)
list3.2 <-   list(trt = c("0" = 0.5, "1" = 0.5 ))
testFactors(model  =  Exam3.2.glm, levels =  list3.2 )

#---------------------------------------------------
## Repairwise treatment means estimate
#---------------------------------------------------
contrast(emmeans(object  = Exam3.2.glm, specs   = "trt"))
contrast(emmeans(object  = Exam3.2.glm, specs   = "trt", type = "response"))

Example 3.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-77)

Description

Exam3.3 use RCBD data with fixed location effect and different forms of estimable functions are shown in this example.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.2

Examples

#-----------------------------------------------------------------------------------
## linear model for Gaussian data
#-----------------------------------------------------------------------------------
data(DataSet3.2)
DataSet3.2$trt <- factor(x = DataSet3.2$trt, level = c(3,0,1,2))
DataSet3.2$loc <- factor(x = DataSet3.2$loc, level = c(8, 1, 2, 3, 4, 5, 6, 7))

levels(DataSet3.2$trt)
levels(DataSet3.2$loc)

Exam3.3.lm1 <- lm(formula = Y~ trt + loc, data = DataSet3.2)
summary( Exam3.3.lm1 )

#-------------------------------------------------------------
## Individual least squares treatment means
#-------------------------------------------------------------
library(emmeans)
(Lsm3.3 <- emmeans(object  = Exam3.3.lm1, specs = ~trt))

#---------------------------------------------------
## Pairwise treatment means estimate
#---------------------------------------------------
contrast(object = Lsm3.3 , method = "pairwise")

#---------------------------------------------------
## Revpairwise treatment means estimate
#---------------------------------------------------
contrast(object = Lsm3.3, method = "revpairwise")
#-------------------------------------------------------
## LSM Trt0 (This term is used in Walter Stroups' book)
#-------------------------------------------------------
contrast(
       object = emmeans(object  = Exam3.3.lm1, specs   = ~ trt)
     , list(trt = c(0, 1, 0, 0))
     )

library(phia)
testFactors(model  =  Exam3.3.lm1, levels =  list(trt = c("0" = 1)))


#-------------------------------------------------------
## LSM Trt0 alt(This term is used in Walter Stroups' book)
#-------------------------------------------------------
# contrast(
#        object = emmeans(object  = Exam3.3.lm1, specs   = ~ trt + loc)
#      , list(
#         trt = c(0, 1, 0, 0)
#       , loc = c(1, 0, 0, 0, 0, 0, 0, 0)
#        )
#      )
#
#
# list3.3.2 <-
#   list(
#         trt = c("0" = 1 )
#       , loc = c("1" = 0, "2" = 0,"3" = 0,"4" = 0,"5" = 0,"6" = 0,"7" = 0)
#   )
# testFactors(model  =  Exam3.3.lm1, levels =  list3.3.2)

#-------------------------------------------------------
##  Trt0 Vs Trt1
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(0, 1, -1, 0))
  )

testFactors(model  =  Exam3.3.lm1, levels =  list(trt = c("0" = 1, "1" = -1)))

#-------------------------------------------------------
##  average Trt0 + Trt1
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(0, 1/2, 1/2, 0))
  )

testFactors(model  =  Exam3.3.lm1, levels =  list(trt = c("0" = 0.5 , "1" = 0.5)))

#-------------------------------------------------------
##  average Trt0+2+3
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(1/3, 1/3, 0, 1/3))
  )

testFactors(model  =  Exam3.3.lm1, levels = list(trt = c("0" = 1/3,"2" = 1/3,"3" = 1/3)))

#-------------------------------------------------------
##  Trt 2 Vs 3 difference
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(-1, 0, 0, 1))
  )

testFactors(model = Exam3.3.lm1, levels = list(trt = c("2" = 1,"3" = -1)))

#-------------------------------------------------------
##  Trt 1 Vs 2 difference
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(0, 0, 1, -1))
  )
testFactors(model = Exam3.3.lm1, levels = list(trt = c("1" = 1,"2" = -1)))

#-------------------------------------------------------
##  Trt 1 Vs 3 difference
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(-1, 0, 1, 0))
  )
testFactors(model = Exam3.3.lm1, levels = list(trt = c("1" = 1,"3" = -1)))

#-------------------------------------------------------
##  Average trt0+1  vs Average Trt2+3
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(-1/2, 1/2, 1/2, -1/2))
  )
testFactors(model = Exam3.3.lm1, levels = list(trt = c("0" = 0.5,"1" = 0.5,"2" = -0.5,"3" = -0.5)))

#-------------------------------------------------------
##  Trt1  vs Average Trt0+1+2
#-------------------------------------------------------
contrast(
    emmeans(object  = Exam3.3.lm1, specs = ~trt)
  , list(trt = c(1/3, 1/3, -1, 1/3))
  )
testFactors(model = Exam3.3.lm1, levels = list(trt = c("0" = 1/3,"1" = -1,"2" = 1/3,"3" = 1/3)))


Example 3.5 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-85)

Description

Exam3.5 fixed location, factorial treatment structure, Gaussian response

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.2

Examples

data(DataSet3.2)
DataSet3.2$A <- factor(x = DataSet3.2$A)
DataSet3.2$B <- factor(x = DataSet3.2$B)
DataSet3.2$loc <- factor(x = DataSet3.2$loc, level = c(8, 1, 2, 3, 4, 5, 6, 7))

Exam3.5.lm <- lm(formula =  Y~ A + B +loc, data =  DataSet3.2)
Exam3.5.lm

##---a0 marginal mean
library(emmeans)
contrast(
       object = emmeans(object  = Exam3.5.lm, specs   = ~ B)
     , list(trt = c(1, 0))
     )
library(phia)
testFactors(model = Exam3.5.lm, levels =  list(B = c("0" = 1,"1" = 0) ))

##---b0 marginal mean
testFactors(model = Exam3.5.lm, levels=list(B = c("0" = 1, "1" = 0)))

##---Simple effect of A on B0
testInteractions(model  =  Exam3.5.lm, custom =  list(B = c("0" = 1,"1" = 0)), across =  "B")

##---Simple effect of B on A0
testInteractions(model = Exam3.5.lm, custom =  list(A = c("0" = 1, "1" = 0)), across =  "A")

##---Simple Effect of A over B
testInteractions(model = Exam3.5.lm, fixed = "A", across = "B")

##---Simple Effect of B over A
testInteractions(model = Exam3.5.lm, fixed = "B", across = "A")

#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
emmeans(object = Exam3.5.lm, specs = ~A*B)

Example 3.9 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-118)

Description

Exam3.9 used to differentiate conditional and marginal binomial models with and without interaction for S2 variable.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet3.2

Examples

#-----------------------------------------------------------------------------------
## Binomial conditional GLMM without interaction, logit link
#-----------------------------------------------------------------------------------
library(MASS)
DataSet3.2$trt <- factor( x  =  DataSet3.2$trt )
DataSet3.2$loc <- factor( x  =  DataSet3.2$loc )

Exam3.9.fm1   <-
  glmmPQL(
      fixed    =  S2/Nbin~trt
    , random   = ~1|loc
    , family   =  quasibinomial(link = "logit")
    , data     =  DataSet3.2
    , niter    = 10
    , verbose  = TRUE
  )
summary(Exam3.9.fm1)
library(parameters)
model_parameters(Exam3.9.fm1)

#-------------------------------------------------------------
##  treatment means
#-------------------------------------------------------------
library(emmeans)
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "response")
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "link")
emmeans(object = Exam3.9.fm1, specs = ~trt, type = "logit")

##--- Normal Approximation
library(nlme)
Exam3.9fm2 <-
  lme(
      fixed       = S2/Nbin~trt
    , data        = DataSet3.2
    , random      = ~1|loc
    , method      = c("REML", "ML")[1]
  )

Exam3.9fm2
model_parameters(Exam3.9fm2)

emmeans(object  = Exam3.9fm2, specs = ~trt)


##---Binomial GLMM with interaction
Exam3.9fm3   <-
  glmmPQL(
      fixed       =  S2/Nbin~trt
    , random      = ~1|trt/loc
    , family      =  quasibinomial(link = "logit")
    , data        =  DataSet3.2
    , niter = 10
    , verbose = TRUE
  )
summary(Exam3.9fm3)
model_parameters(Exam3.9fm3)
emmeans(object = Exam3.9fm3, specs = ~trt)


##---Binomial Marginal GLMM(assuming compound symmetry)
Exam3.9fm4   <-
  glmmPQL(
      fixed       =  S2/Nbin~trt
    , random      = ~1|loc
    , family      =  quasibinomial(link = "logit")
    , data        =  DataSet3.2
    , correlation =  corCompSymm(form = ~1|loc)
    , niter       = 10
    , verbose     = TRUE
  )
summary(Exam3.9fm4)
model_parameters(Exam3.9fm4)
emmeans(object  = Exam3.9fm4, specs  = ~trt)


Example 4.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-138)

Description

Exam4.1 REML vs ML criterion is used keeping block effects random

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet4.1

Examples


DataSet4.1$trt   <- factor(x =  DataSet4.1$trt)
DataSet4.1$block <- factor(x =  DataSet4.1$block)

#---REML estimates on page 138(article 4.4.3.3)
library(lmerTest)

Exam4.1REML  <- lmer(formula = y~ trt +( 1|block ), data = DataSet4.1)
library(parameters)
model_parameters(Exam4.1REML)
print(VarCorr(x = Exam4.1REML), comp = c("Variance"))

##---ML estimates on page 138(article 4.4.3.3)
Exam4.1ML  <- lmer(formula = y ~ trt + (1|block), data = DataSet4.1, REML = FALSE)
model_parameters(Exam4.1ML)
print(VarCorr(x =  Exam4.1ML), comp = c("Variance"))

Exam4.1.lm <- lm(formula  = y~ trt + block, data = DataSet4.1)
anova(object = Exam4.1.lm)

Example 5.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-163)

Description

Exam5.1 is used to show polynomial multiple regression with binomial response

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet5.1

Examples


##---Sequential Fit of the logit Model
Exam5.1.glm.1 <-
  glm(
      formula    =  F/N~ X
    , family     =  quasibinomial(link = "logit")
    , data       =  DataSet5.1
    )
summary(Exam5.1.glm.1)
library(parameters)
model_parameters(Exam5.1.glm.1)

## confint.default()   produce Wald Confidence interval as SAS produces
##---Likelihood Ratio test for Model 1
anova(object = Exam5.1.glm.1, test = "Chisq")

library(aod)
WaldExam5.1.glm.1 <-
  wald.test(
      Sigma   = vcov(object = Exam5.1.glm.1)
    , b       = coef(object = Exam5.1.glm.1)
    , Terms   = 2
    , L       = NULL
    , H0      = NULL
    , df      = NULL
    , verbose = FALSE
  )

##---Sequential Fit of the logit Model quadratic terms involved
Exam5.1.glm.2 <-
  glm(
      formula    =  F/N~ X + I(X^2)
    , family     =  quasibinomial(link = "logit")
    , data       =  DataSet5.1
    )
summary( Exam5.1.glm.2 )
model_parameters( Exam5.1.glm.2 )

##---Likelihood Ratio test for Model Exam5.1.glm.2
anova(object = Exam5.1.glm.2, test = "Chisq")

WaldExam5.1.glm.2 <-
  wald.test(
      Sigma   = vcov(object = Exam5.1.glm.2)
    , b       = coef(object = Exam5.1.glm.2)
    , Terms   = 3
    , L       = NULL
    , H0      = NULL
    , df      = NULL
    , verbose = FALSE
  )

##---Sequential Fit of the logit Model 5th power terms involved
Exam5.1.glm.3 <-
  glm(
      formula    =  F/N~ X + I(X^2) + I(X^3) + I(X^4) + I(X^5)
    , family     =  quasibinomial(link = "logit")
    , data       =  DataSet5.1
    )
summary(Exam5.1.glm.3)
model_parameters(Exam5.1.glm.3)

## confint.default()   produce Wald Confidence interval as SAS produces
##---Likelihood Ratio test for Model 1
anova(object =  Exam5.1.glm.3, test = "Chisq")

WaldExam5.1.glm.3 <-
  wald.test(
      Sigma   = vcov(object = Exam5.1.glm.3)
    , b       = coef(object = Exam5.1.glm.3)
    , Terms   = 6
    , L       = NULL
    , H0      = NULL
    , df      = NULL
    , verbose = FALSE
  )

Example 5.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-164)

Description

Exam5.2 three factor main effects only design

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet5.2

Examples


DataSet5.2$a <- factor( x = DataSet5.2$a)
DataSet5.2$b <- factor( x = DataSet5.2$b)
DataSet5.2$c <- factor(x  = DataSet5.2$c)

##---first adding factor a in model
Exam5.2.lm1 <- lm(formula = y~ a, data  = DataSet5.2)
summary(Exam5.2.lm1)
library(parameters)
model_parameters(Exam5.2.lm1)

library(emmeans)
##---A first
emmeans(object  = Exam5.2.lm1, specs = ~a)
contrast(emmeans(object  = Exam5.2.lm1, specs = ~a), method = "pairwise")
anova(object = Exam5.2.lm1)

##---then adding factor b in model
Exam5.2.lm2 <- lm(formula = y~ a + b, data  = DataSet5.2)
summary(Exam5.2.lm2)
model_parameters(Exam5.2.lm2)

emmeans(object  = Exam5.2.lm2, specs = ~b)
contrast(emmeans(object  = Exam5.2.lm2, specs = ~b), method = "pairwise")
anova(object = Exam5.2.lm2)

##---then adding factor c in model
Exam5.2.lm3 <- lm(formula = y~ a + b + c, data = DataSet5.2)

summary(Exam5.2.lm3)
model_parameters(Exam5.2.lm3)

emmeans(object  = Exam5.2.lm3, specs = ~c)
contrast(emmeans(object  = Exam5.2.lm3, specs = ~c), method = "pairwise")
anova(object = Exam5.2.lm3)

##---Now Change the order and add b first in model
Exam5.2.lm4 <- lm(formula = y ~  b, data = DataSet5.2)
summary(Exam5.2.lm4)
model_parameters(Exam5.2.lm4)

emmeans(object  = Exam5.2.lm4, specs = ~b)
contrast(emmeans(object  = Exam5.2.lm4, specs = ~b), method = "pairwise")
anova(object = Exam5.2.lm4)


##---then adding factor a in model
Exam5.2.lm5 <- lm(formula = y ~ b + a, data  = DataSet5.2)
summary(Exam5.2.lm5)
model_parameters(Exam5.2.lm5)

emmeans(object  = Exam5.2.lm5, specs = ~a)
contrast(emmeans(object  = Exam5.2.lm5, specs = ~a), method = "pairwise")
anova(object = Exam5.2.lm5)


Example 5.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-172)

Description

Exam5.3 Inference using empirical standard error with different Bias connection

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet4.1

Examples


data(DataSet4.1)
DataSet4.1$trt   <- factor(x = DataSet4.1$trt)
DataSet4.1$block <- factor( x = DataSet4.1$block)

##---REML estimates on page 172
library(lmerTest)
Exam5.3REML <-  lmerTest::lmer(formula = y ~ trt + (1|block), data = DataSet4.1, REML = TRUE)
Exam5.3REML
library(parameters)
model_parameters(Exam5.3REML)
##---Standard Error Type "Model Based" with no Bias Connection
anova(object = Exam5.3REML)
anova(object = Exam5.3REML, ddf = "Satterthwaite")


##---Standard Error Type "Model Based" with "Kenward-Roger approximation" Bias Connection
anova(object = Exam5.3REML, ddf = "Kenward-Roger")

##---ML estimates on page 172
Exam5.3ML <- lmerTest::lmer(formula = y ~ trt + ( 1|block ), data = DataSet4.1, REML = FALSE)
Exam5.3ML
library(parameters)
model_parameters(Exam5.3ML)

##---Standard Error Type "Model Based" with no Bias Connection
anova(object = Exam5.3ML )
anova(object = Exam5.3ML, ddf = "Satterthwaite")


Example 7.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-213)

Description

Exam7.1 explains multifactor models with all factors qualitative

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

@seealso DataSet7.1

Examples


library(emmeans)
library(car)
data(DataSet7.1)

DataSet7.1$a <- factor(x = DataSet7.1$a)
DataSet7.1$b <- factor(x = DataSet7.1$b)

Exam7.1.lm1 <- lm(formula = y ~ a + b + a*b, data = DataSet7.1)
summary(Exam7.1.lm1)
library(parameters)
model_parameters(Exam7.1.lm1)
anova(Exam7.1.lm1)

##---Result obtained as in SLICE statement in SAS for a0 & a1
library(phia)
testInteractions(
    model  = Exam7.1.lm1
  , custom = list(a = c("0" = 1))
  , across = "b"
  )

testInteractions(
    model  = Exam7.1.lm1
  , custom = list(a = c("1" = 1))
  , across = "b"
  )


##---Interaction plot
emmip(
       object  = Exam7.1.lm1
     , formula = a~b
     , ylab    = "y Lsmeans"
     , main    = "Lsmeans for a*b"
      )

#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
emmeans(object = Exam7.1.lm1, specs = ~a*b)

##---Simpe effects comparison of interaction by a
##   (but it doesn't give the same p-value as in article 7.4.2 page#215)
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts

pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "each", combine = TRUE)
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "a")
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "b")
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a))
contrast(emmeans(object = Exam7.1.lm1, specs = ~b|a))
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts

##---Alternative method of pairwise comparisons by
## applying contrast
##   coefficient (gives the same p-value as in 7.4.2)
contrast(
          emmeans(object = Exam7.1.lm1, specs = ~a*b)
        , list (
                c1 = c(1, 0, -1, 0, 0, 0)
              , c2 = c(1, 0, 0, 0, -1, 0)
              , c3 = c(0, 0, 1, 0, -1, 0)
              , c4 = c(0, 1, 0, -1, 0, 0)
              , c5 = c(0, 1, 0, 0, 0, -1)
              , c6 = c(0, 1, 0, 0, -1, 0)
              )
  )


##---Nested Model (page 216)----
Exam7.1.lm2 <- lm(formula = y ~ a + a %in% b, data = DataSet7.1)

summary(Exam7.1.lm2)
model_parameters(Exam7.1.lm2)
anova(Exam7.1.lm2)

car::linearHypothesis(Exam7.1.lm2, c("a0:b1 = a0:b2"))
car::linearHypothesis(Exam7.1.lm2, c("a1:b1 = a1:b2"))

 ##---Bonferroni's adjusted p-values
emmeans(object  = Exam7.1.lm2, specs = pairwise~b|a, adjust  = "bonferroni")$contrasts

##--- Alternative method of pairwise comparisons by
##  applying contrast coefficient with Bonferroni adjustment
contrast(
          emmeans(object = Exam7.1.lm1, specs = ~a*b)
        , list (
                c1 = c(1, 0, -1, 0, 0, 0)
              , c2 = c(1, 0, 0, 0, -1, 0)
              , c3 = c(0, 0, 1, 0, -1, 0)
              , c4 = c(0, 1, 0, -1, 0, 0)
              , c5 = c(0, 1, 0, 0, 0, -1)
              , c6 = c(0, 1, 0, 0, -1, 0)
              )
        , adjust = "bonferroni"
  )



Example 7.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-219)

Description

Exam7.2 explains multifactor models with some factors qualitative and some quantitative(Equal slopes ANCOVA)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

@seealso DataSet7.2

Examples

library(emmeans)
library(car)
library(ggplot2)

data(DataSet7.2)
DataSet7.2$trt <- factor( x = DataSet7.2$trt )

##----ANCOVA(Equal slope Model)
Exam7.2fm1 <- aov(formula = y ~ trt*x, data = DataSet7.2)
car::Anova(mod = Exam7.2fm1 , type = "III")

##---ANCOVA(without interaction because of non significant slope effect)
Exam7.2fm2 <- aov(formula = y ~ trt + x, data    = DataSet7.2)
car::Anova(mod = Exam7.2fm2 , type = "III")

##---Ls means for 2nd model
emmeans(object  = Exam7.2fm2, specs = ~trt)

##---Anova without covariate
Exam7.2fm3 <- aov(formula = y ~ trt, data = DataSet7.2)
car::Anova(mod = Exam7.2fm3, type = "III")

##---Ls means for 3rd model
emmeans(object = Exam7.2fm3, specs = ~trt)

##---Box Plot of Covariate by treatment
Plot <-
   ggplot(
          data    = DataSet7.2
        , mapping = aes(x = factor(trt), y = x)
         )                 +
   geom_boxplot(width = 0.5) +
   coord_flip()            +
   geom_point()            +
   stat_summary(
         fun    = "mean"
       , geom     = "point"
       , shape    =  23
       , size     =  2
       , fill     = "red"
       )                   +
   theme_bw()              +
   ggtitle("Covariate by treatment Box Plot") +
   xlab("Treatment")
print(Plot)


Example 7.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-223)

Description

Exam7.3 explains multifactor models with some factors qualitative and some quantitative(Unequal slopes ANCOVA)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

@seealso DataSet7.3

Examples


library(car)
library(ggplot2)
library(emmeans)
data(DataSet7.3)

DataSet7.3$trt <- factor(x = DataSet7.3$trt )

##----ANCOVA(Unequal slope Model)
Exam7.3fm1 <- aov(formula = y ~ trt*x, data = DataSet7.3)
car::Anova( mod = Exam7.3fm1 , type = "III")

Plot <-
   ggplot(
          data    = DataSet7.3
        , mapping = aes(x = factor(trt), y = x)
         )                 +
   geom_boxplot(width = 0.5) +
   coord_flip()            +
   geom_point()            +
   stat_summary(
         fun      = "mean"
       , geom     = "point"
       , shape    =  23
       , size     =  2
       , fill     = "red"
       )                   +
   theme_bw()              +
   ggtitle("Covariate by treatment Box Plot") +
   xlab("Treatment")
print(Plot)

##----ANCOVA(Unequal slope Model without intercept at page 224)
Exam7.3fm2 <- lm(formula = y ~ 0 + trt/x, data = DataSet7.3)
summary(Exam7.3fm2)
library(parameters)
model_parameters(Exam7.3fm2)

##--Lsmeans treatment at x=7 & 12 at page 225
emmeans(object = Exam7.3fm2, specs = ~trt|x, at = list(x = c(7, 12)))


Example 7.6.2.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-231)

Description

Exam7.6.2.1 Nonlinear Mean Models ( Quantitative by quantitative models)

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

@seealso DataSet7.6

Examples


library(scatterplot3d)
data(DataSet7.6)

library(dplyr)
library(magrittr)

DataSet7.6 <-
   DataSet7.6 %>%
   mutate(
     logx1 = ifelse(test = x1 == 0, yes = log(x1 + 0.1), no = log(x1))
   , logx2 = ifelse(test = x2 == 0, yes = log(x2 + 0.1), no = log(x2))
   )
DataSet7.6
Exam7.6.2.1.lm <- lm(formula = response ~ x1*x2 + logx1*logx2 , data = DataSet7.6)
summary(Exam7.6.2.1.lm)
library(parameters)
model_parameters(Exam7.6.2.1.lm)

##---3D Scatter plot ( page#232)
attach(DataSet7.6)
(
  ScatterPlot1 <-
   scatterplot3d(
             x           = x1
           , y           = x2
           , z           = response
           , color      = response
           , main        = " 3D Scatter plot of response")
  )

##--- scatter plot with regression plane by using Hoerl function ( page#233)
grid.lines <-  5
x1.pred <- seq(min(x1), max(x1), length.out = grid.lines)
x2.pred <- seq(min(x2), max(x2), length.out = grid.lines)
x1x2    <- expand.grid( x = x1.pred, y = x2.pred)

z.pred  <- matrix(data = predict(Exam7.6.2.1.lm, newdata = x1x2),
                  nrow = grid.lines
                , ncol = grid.lines)
(ScatterPlot2 <-
   scatterplot3d(
             x           = x1
           , y           = x2
           , z           = response
           , pch         = 20
           , phi         = 25
           , theta       = 30
           , ticktype   = "detailed"
           , xlab       =  "x1"
           , ylab       =  "x2"
           , zlab       = "response"
           , add         = FALSE
           , surf        = list(x      = x1.pred ,
                                y      = x2.pred ,
                                z      = z.pred  ,
                                facets = NA
                                )
           , plot        = TRUE
           , main        = "Fitted Response Surface by Hoerl Function"
           )
           )

Example 7.7 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-235)

Description

Exam7.7 is an explaination of segmented regression

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet7.7

Examples


library(splines)
library(ggplot2)

DataSet7.7$a  <- factor(x = DataSet7.7$a)
knots <- c(0, 0, 0, 0, 10, 10, 20, 30, 40, 40, 40, 45, 45, 45, 50, 50, 50)

bx <- splineDesign(knots = knots, x = DataSet7.7$x, outer.ok = TRUE)

Exam7.7fm <- lm(formula = y ~ a*bx, data  = DataSet7.7)
anova(Exam7.7fm)

Data  <- data.frame(DataSet7.7, fit = Exam7.7fm$fit)
##---Estimated response surface by using segmented regression
Plot <-
     ggplot(data = Data , mapping = aes(x = x, y = y, colour = a)) +
     geom_point() +
     geom_line(linewidth = 1) +
     ggtitle("Response surface by using segmented regression")

print(Plot)

Example 8.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-250)

Description

Exam8.1 Nested factorial structure

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet8.1

Examples


data(DataSet8.1)
DataSet8.1$block <- factor(x = DataSet8.1$block)
DataSet8.1$set <- factor(x = DataSet8.1$set)
DataSet8.1$trt <- factor(x = DataSet8.1$trt)

library(lmerTest)
Exam8.1Lmer <- lmer(y ~ set + trt %in% set + (1|set/block), DataSet8.1)
summary(Exam8.1Lmer)
anova(Exam8.1Lmer)

library(emmeans)
emmeans(object  = Exam8.1Lmer, specs = ~trt|set)
contrast(emmeans(object  = Exam8.1Lmer, specs = ~trt|set), method = "pairwise", by = "set")


Example 8.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-252)

Description

Exam8.2 Incomplete strip-plot

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet8.2

Examples


data(DataSet8.2)
DataSet8.2$block <- factor(x = DataSet8.2$block)
DataSet8.2$a <- factor(x = DataSet8.2$a)
DataSet8.2$b <- factor(x = DataSet8.2$b)

library(lmerTest)

Exam8.2lmer <-
          lmer(
                 formula = y ~ a*b + (1|block) + (1|block:a) + (1|block:b)
               , data    = DataSet8.2
               )
anova(Exam8.2lmer,ddf="Kenward-Roger")

library(emmeans)
emmeans(object  = Exam8.2lmer, specs = ~a|b)
emmip(
       object  = emmeans(object  = Exam8.2lmer, specs = ~a|b)
     , formula = a~b
     , ylab    = "y Lsmeans"
     , main    = "Lsmeans for a*b"
      )

##---Simple effect comparisons of a*b Least Squares Means by a ( page # 254)
emmeans(Exam8.2lmer, pairwise ~ b|a)



Example 8.3 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-255)

Description

Exam8.3 explains Response surface design with incomplete blocking

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet8.3

Examples


## Response Surface Design with incomplete blocking (page 255)
data(DataSet8.3)
DataSet8.3$block <- factor(x = DataSet8.3$block)
DataSet8.3$aa <- factor(x = DataSet8.3$a)
DataSet8.3$bb <- factor(x = DataSet8.3$b)
DataSet8.3$cc <- factor(x = DataSet8.3$c)

library(lmerTest)
library(lattice)

Exam8.3.fm1 <-
         lmer(
             y ~ aa:bb:cc + a + b + c +
                 I(a^2) + I(b^2) + I(c^2) +
                 a*b + a*c + b*c + (1|block)
           , data = DataSet8.3
           )

##--- page 256
anova(Exam8.3.fm1, ddf = "Kenward-Roger", type = 1)


Exam8.3.fm2 <-
           lmer(
                y ~ a + b + c +
                    I(a^2) + I(b^2) + I(c^2) +
                    a*b + a*c + b*c + (1|block)
              , data = DataSet8.3
              )
##--- page 257
anova(Exam8.3.fm2, ddf = "Kenward-Roger", type = 1)

##--- page 257
Exam8.3.fm3 <-
        lmer(
             y ~ a + b + c +
                 I(a^2) + I(b^2) +
                 a*c + b*c + (1|block)
          , DataSet8.3
          )
anova(Exam8.3.fm3, ddf = "Kenward-Roger", type = 1)

##--- scatter plot with regression plane by using Hoerl function ( page#233)
a <- seq(from = -1, to = 1, by = 1)
b <- seq(from = -1, to = 1, by = 1)
c <- seq(from = -1, to = 1, by = 1)
abc <- expand.grid(a = a, b = b, c = c)

Yhat <- NULL
for(i in 1:nrow(abc)) {
Yhat[i] <- 50.08500 + 1.6*abc$a[i] + 1.69375*abc$b[i] +  0.51875*abc$c[i]-
           3.30250*I((abc$a[i])^2)-3.51500*I((abc$b)^2)[i] -
           0.52500*(abc$a)[i]*(abc$c)[i]-1.16250*(abc$b)[i]*(abc$c)[i]
}

Newdata <- data.frame(abc, Yhat)
Plot1 <-
  wireframe(Yhat ~ b*a, data = subset(Newdata,c==-1),
  xlab = "b", ylab = "a",
  main = "Predicte response surface at C=-1",  colorkey = FALSE,
  drape = TRUE, scales = list(arrows = FALSE),xlim=c(max(b),(min(b))),
  screen = list(z = -50, x =-70)
)

Plot2 <-
  wireframe(Yhat ~ b*a, data = subset(Newdata,c==0),
  xlab = "b", ylab = "a",
  main = "Predicte response surface at C=0",  colorkey = FALSE ,
  drape = TRUE, scales = list(arrows = FALSE),xlim=c(max(b),(min(b))),
  screen = list(z = -50, x =-70)
)

Plot3 <-
 wireframe(Yhat ~ b*a, data = subset(Newdata,c==1),
  xlab = "b", ylab = "a",
  main = "Predicte response surface at C=1",  colorkey = FALSE,
  drape = TRUE, scales = list(arrows = FALSE),xlim=c(max(b),(min(b))),
  screen = list(z = -50, x =-70)
)

print(Plot1)
print(Plot2)
print(Plot3)


Example 8.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-259)

Description

Exam8.4 Multifactor treatment and Multilevel design structures

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet8.4

Examples


data(DataSet8.4)
DataSet8.4$block <- factor(x = DataSet8.4$block)
DataSet8.4$a <- factor(x = DataSet8.4$a)
DataSet8.4$b <- factor(x = DataSet8.4$b)

library(lmerTest)
Exam8.4lmer   <-
           lmer(
                y ~ a + b %in% a +
                    (1|block) + (1|block:a) + (1|block:b)
              , data = DataSet8.4
              )
anova(Exam8.4lmer, ddf = "Kenward-Roger")

library(emmeans)
emmeans(object = Exam8.4lmer, specs = ~a|b)

Example 9.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-273)

Description

Exam9.1 One-way random effects only model

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet9.1

Examples


data(DataSet9.1)
DataSet9.1$a <- factor(x = DataSet9.1$a)

##---Random effects model
library(lmerTest)
Exam9.1lmer <- lmer( y ~ 1 + (1|a), data = DataSet9.1)
summary(Exam9.1lmer)

##---fixed effects model
Exam9.1lmer2 <- lm(y ~ a, data = DataSet9.1)
summary(Exam9.1lmer2)

 #---------------------------------------------------
 ## Over all mean narrow( page # 274)
 #---------------------------------------------------
library(emmeans)
library(phia)
list9.1 <- list(a = c( "1" = 1/12,"2" = 1/12
                      , "3" = 1/12,"4" = 1/12
                      , "5" = 1/12,"6" = 1/12
                      , "7" = 1/12,"8" = 1/12
                      , "9" = 1/12,"10" = 1/12
                      , "11" = 1/12,"12" = 1/12
                      ))
phia::testFactors(model = Exam9.1lmer2, levels = list9.1)


#---BLUP Estimates (Table 9.1)
coef <- unlist(ranef(Exam9.1lmer))
BLUPa <- NULL
for( i in 1:length(coef)) {
  BLUPa[i] <- (mean(DataSet9.1$y)+coef[i])
  }
print(BLUPa)


Example 9.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-276)

Description

Exam9.2 Two way random effects nested model

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet9.2

Examples


data(DataSet9.2)
DataSet9.2$a <- factor(x = DataSet9.2$a)
DataSet9.2$b <- factor(x = DataSet9.2$b)

library(lmerTest)
Exam9.2lmer <- lmer(y ~ (1|b/a), data = DataSet9.2)
summary(Exam9.2lmer)

Exam9.2lmer2 <- lm(y ~ a + b %in% a, data = DataSet9.2)
summary(Exam9.2lmer2)

##--- Over all mean
library(phia)
list9.2 <- list(a = c("1" = 1/7,"2" = 1/7
                    , "3" = 1/7,"4" = 1/7
                    , "5" = 1/7,"6" = 1/7
                    , "7" = 1/7
                     ))
phia::testFactors(model = Exam9.2lmer2, levels = list9.2)

#---BLUP Estimates
coef <- unlist(ranef(Exam9.2lmer)$a)
BLUPa <- NULL
for(i in 1:length(coef)){
  BLUPa[i] <- (mean(DataSet9.2$y) + coef[i])
  }
print(BLUPa)

#---BLUP Estimates Narrow
BLUPaNar <- NULL
for( i in 1:length(coef)) {
  BLUPaNar[i] <- (mean(DataSet9.2$y) + coef[i])
}

BLUPaNar


Example 9.4 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup (p-288)

Description

Exam9.4 Relationship between BLUP and Fixed Effect Estimators

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

DataSet9.4

Examples

data(DataSet9.4)
DataSet9.4$a <- factor(x = DataSet9.4$a)
DataSet9.4$b <- factor(x = DataSet9.4$b)

library(lmerTest)
Exam9.4lmer <- lmer(y ~ a + (1|b) + (1|a/b), data = DataSet9.4)
summary(Exam9.4lmer)
library(emmeans)
emmeans(Exam9.4lmer, spec = ~a)


Data for Table1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup

Description

Table1.1 is used for inspecting probability distribution and to define a plausible process.

Usage

data(Table1.1)

Format

A data.frame with 11 rows and 3 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

Examples

library(StroupGLMM)
data(Table1.1)

Data for Table1.2 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-10)

Description

Exam1.2 is used to see types of model effects by plotting regression data

Usage

data(Table1.2)

Format

A data.frame with 36 rows and 5 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012).Generalized linear mixed models: modern concepts, methods and applications. CRC press.

See Also

Exam1.2

Examples

data(Table1.2)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.