The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(StructuralDecompose)
All univariate time series data can be broken down into three major components. A cyclic repeated motion, A general growth pattern and the remaining unexplained portion. Popularly they are Seasonality/Cyclicity, Trend and Residuals respectively. Each component can be treated separately, and then summed together to get the final time series.
Trend is the underlying motion of the time series and can have a variety of forms. It can be increasing, decreasing or it can have highly random movements. In StructuralDecompose, we assume that the trend can be broken up into many different parts based upon breakpoints that we have identified in the series.
<- StructuralDecompose::Nile_dataset[,1]
data
<- StructuralDecompose(data)
x $trend x
Here we have a few different versions of Trend
Seasonality is a repeated motion of the time series. Seasonality can very broadly be either Additive or multiplicative. StructuralDecompose automatically identifies the seasonality type and treats it accordingly.
<- StructuralDecompose(data)
x $seasonality x
Here we have two different types of seasonality
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.