The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

TIGERr: Technical Variation Elimination with Ensemble Learning Architecture

The R implementation of TIGER. TIGER integrates random forest algorithm into an innovative ensemble learning architecture. Benefiting from this advanced architecture, TIGER is resilient to outliers, free from model tuning and less likely to be affected by specific hyperparameters. TIGER supports targeted and untargeted metabolomics data and is competent to perform both intra- and inter-batch technical variation removal. TIGER can also be used for cross-kit adjustment to ensure data obtained from different analytical assays can be effectively combined and compared. Reference: Han S. et al. (2022) <doi:10.1093/bib/bbab535>.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: parallel (≥ 2.1.0), pbapply (≥ 1.4-3), ppcor (≥ 1.1), randomForest (≥ 4.6-14), stats (≥ 3.0.0)
Published: 2022-01-06
DOI: 10.32614/CRAN.package.TIGERr
Author: Siyu Han [aut, cre], Jialing Huang [aut], Francesco Foppiano [aut], Cornelia Prehn [aut], Jerzy Adamski [aut], Karsten Suhre [aut], Ying Li [aut], Giuseppe Matullo [aut], Freimut Schliess [aut], Christian Gieger [aut], Annette Peters [aut], Rui Wang-Sattler [aut]
Maintainer: Siyu Han <siyu.han at helmholtz-muenchen.de>
BugReports: https://github.com/HAN-Siyu/TIGER/issues
License: GPL (≥ 3)
NeedsCompilation: no
Citation: TIGERr citation info
Materials: NEWS
CRAN checks: TIGERr results

Documentation:

Reference manual: TIGERr.pdf

Downloads:

Package source: TIGERr_1.0.0.tar.gz
Windows binaries: r-devel: TIGERr_1.0.0.zip, r-release: TIGERr_1.0.0.zip, r-oldrel: TIGERr_1.0.0.zip
macOS binaries: r-release (arm64): TIGERr_1.0.0.tgz, r-oldrel (arm64): TIGERr_1.0.0.tgz, r-release (x86_64): TIGERr_1.0.0.tgz, r-oldrel (x86_64): TIGERr_1.0.0.tgz
Old sources: TIGERr archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=TIGERr to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.