The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(TLMoments)
library(lmomco)
library(Lmoments)
library(lmom)
sessionInfo()
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 21.04
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
## [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lmom_2.8 Lmoments_1.3-1 lmomco_2.3.7 TLMoments_0.7.5.3
## [5] Rcpp_1.0.7
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.29 MASS_7.3-55 magrittr_2.0.1 evaluate_0.14
## [5] rlang_1.0.2 stringi_1.7.6 cli_3.1.0 rstudioapi_0.13
## [9] goftest_1.2-3 rmarkdown_2.11 tools_4.1.2 stringr_1.4.0
## [13] xfun_0.29 yaml_2.2.1 fastmap_1.1.0 compiler_4.1.2
## [17] htmltools_0.5.2 knitr_1.37
This document shows a comparison of computation time of TL-moments between different packages available, as well as between the different approaches built-in in this package.
This package offers the following computation methods (available via computation.method
-attribute in TLMoments
or TLMoment
):
direct: Calculation as a weighted mean of the ordered data vector
pwm: Calculation of probabilty-weighted moments and using the conversion to TL-moments
recursive: An alternative recursive estimation of the weights of the direct approach
recurrence: Estimating the L-moments first and using the recurrence property to derive TL-moments
For a complete and thorough analysis of all these approaches and another speed comparison see Hosking & Balakrishnan (2015, A uniqueness result for L-estimators, with applications to L-moments, Statistical Methodology, 24, 69-80).
Besides our implementation, L-moments and/or TL-moments can be calculated using the packages
lmomco
: L-moments and TL-moments
Lmoments
: L-moments and TL(1,1)-moments
lmom
: only L-moments
(all availabe at CRAN). The functions lmomco::lmoms
, lmomco::TLmoms
, and Lmoments::Lmoments
return list objects with (T)L-moments and (T)L-moment-ratios and are therefore compared to our TLMoments
. The function lmom::samlmu
returns a vector of lambdas and is compared to the function TLMoment
(which is a faster bare-bone function to compute TL-moments but is not suited to be transmitted to parameters
or other functions of this package).
First we check if all calculation approaches in TLMoments
give the same results (lmomco::lmoms is added as comparison):
<- c(25, 50, 100, 200, 500, 1000, 10000, 50000)
n sapply(n, function(nn) {
<- rgev(nn)
x <- lmomco::lmoms(x, 4)$lambdas
check sapply(c("direct", "pwm", "recursive"), function(comp) {
isTRUE(all.equal(TLMoment(x, order = 1:4, computation.method = comp), check, check.attributes = FALSE))
}) })
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## direct TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## pwm TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## recursive TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
Now we compare the functions giving L-moments and L-moment-ratios simultaneously regarding computation speed:
<- list(
possib TLMoments_direct = function(x) TLMoments(x, max.order = 4, computation.method = "direct"),
TLMoments_pwm = function(x) TLMoments(x, max.order = 4, computation.method = "pwm"),
TLMoments_recursive = function(x) TLMoments(x, max.order = 4, computation.method = "recursive"),
lmomco = function(x) lmomco::lmoms(x, 4),
Lmoments = function(x) Lmoments::Lmoments(x, returnobject = TRUE)
)
# n = 50
<- replicate(200, rgev(50), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.030
## TLMoments_pwm 0.025
## TLMoments_recursive 0.020
## lmomco 0.372
## Lmoments 0.012
# n = 1000
<- replicate(200, evd::rgev(1000), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.200
## TLMoments_pwm 0.165
## TLMoments_recursive 0.043
## lmomco 5.980
## Lmoments 0.020
Lmoments
(since version 1.3-1) is the fastest implementation. Within TLMoments
the recursive approach is the fastest. After this, the pwm approach is to be prefered over the direct approach. The implementation in lmomco
is slow, compared to the others, especially for longer data vectors.
Comparison of functions that only return a vector of L-moments:
<- list(
possib TLMoments_direct = function(x) TLMoment(x, order = 1:4, computation.method = "direct"),
TLMoments_pwm = function(x) TLMoment(x, order = 1:4, computation.method = "pwm"),
TLMoments_recursive = function(x) TLMoment(x, order = 1:4, computation.method = "recursive"),
lmom = function(x) lmom::samlmu(x, 4),
Lmoments = function(x) Lmoments::Lmoments(x, returnobject = FALSE)
)
# n = 50
<- replicate(200, rgev(50), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.013
## TLMoments_pwm 0.011
## TLMoments_recursive 0.005
## lmom 0.006
## Lmoments 0.006
# n = 1000
<- replicate(200, rgev(1000), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.164
## TLMoments_pwm 0.133
## TLMoments_recursive 0.025
## lmom 0.016
## Lmoments 0.016
For smaller data vectors our recursive-implementation is as fast as lmom::samlmu
, but for longer data vectors lmom::samlmu
and Lmoments::Lmoments
are faster.
Again, first we check if all approaches give the same results (lmomco::Tlmoms is added as comparison):
<- c(25, 50, 100, 150, 200, 500, 1000, 10000)
n names(n) <- paste("n", n, sep = "=")
sapply(n, function(nn) {
<- rgev(nn)
x <- lmomco::TLmoms(x, 4, leftrim = 0, rightrim = 1)$lambdas
check sapply(c("direct", "pwm", "recursive", "recurrence"), function(comp) {
<- suppressWarnings(TLMoments(x, rightrim = 1, computation.method = comp)$lambdas)
tlm isTRUE(all.equal(tlm, check, check.attributes = FALSE))
}) })
## n=25 n=50 n=100 n=150 n=200 n=500 n=1000 n=10000
## direct TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## pwm TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## recursive TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## recurrence TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
sapply(n, function(nn) {
<- rgev(nn)
x <- lmomco::TLmoms(x, 4, leftrim = 2, rightrim = 4)$lambdas
check sapply(c("direct", "pwm", "recursive", "recurrence"), function(comp) {
<- suppressWarnings(TLMoments(x, leftrim = 2, rightrim = 4, computation.method = comp)$lambdas)
tlm isTRUE(all.equal(tlm, check, check.attributes = FALSE))
}) })
## n=25 n=50 n=100 n=150 n=200 n=500 n=1000 n=10000
## direct TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## pwm TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## recursive TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
## recurrence TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
The recursive approach fails when n exceeds 150. All other implementations give the same results.
Speed comparison for TL(0,1)-moments:
<- list(
possib TLMoments_direct = function(x) TLMoments(x, leftrim = 0, rightrim = 1, max.order = 4, computation.method = "direct"),
TLMoments_pwm = function(x) TLMoments(x, leftrim = 0, rightrim = 1, max.order = 4, computation.method = "pwm"),
TLMoments_recurrence = function(x) TLMoments(x, leftrim = 0, rightrim = 1, max.order = 4, computation.method = "recurrence"),
lmomco = function(x) lmomco::TLmoms(x, 4, leftrim = 0, rightrim = 1)
)
# n = 50
<- replicate(200, rgev(50), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.072
## TLMoments_pwm 0.023
## TLMoments_recurrence 0.017
## lmomco 0.315
# n = 1000
<- replicate(200, rgev(1000), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 1.089
## TLMoments_pwm 0.191
## TLMoments_recurrence 0.038
## lmomco 5.732
Speed comparison for TL(2,4)-moments:
<- list(
possib TLMoments_direct = function(x) TLMoments(x, leftrim = 2, rightrim = 4, max.order = 4, computation.method = "direct"),
TLMoments_pwm = function(x) TLMoments(x, leftrim = 2, rightrim = 4, max.order = 4, computation.method = "pwm"),
TLMoments_recurrence = function(x) TLMoments(x, leftrim = 2, rightrim = 4, max.order = 4, computation.method = "recurrence"),
lmomco = function(x) lmomco::TLmoms(x, 4, leftrim = 2, rightrim = 4)
)
# n = 50
<- replicate(200, evd::rgev(50), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 0.071
## TLMoments_pwm 0.030
## TLMoments_recurrence 0.019
## lmomco 0.289
# n = 1000
<- replicate(200, evd::rgev(1000), simplify = FALSE)
datalist
do.call("rbind", lapply(possib, function(f) {
system.time(lapply(datalist, f))[3]
}))
## elapsed
## TLMoments_direct 1.116
## TLMoments_pwm 0.331
## TLMoments_recurrence 0.046
## lmomco 5.968
In this calculations the recurrence approach clearly outperforms the other implementations. Calculation using probabilty-weighted moments is relatively fast, but using the direct calculation should be avoided, regarding calculation speed. This package’s implementation is clearly faster than those in lmomco
.
This results encourage to use the recursive approach for L-moments and the recurrence approach when calculating TL-moments. Therefore these are the defaults in this package, but the other computation methods (direct and pwm) are still available (by using the argument computation.method
).
In comparison to other packages Lmoments
is faster but only supports L-moments and TL(1,1)-moments.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.