The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Twitmo

R-CMD-check License: MIT

The goal of Twitmo is to facilitate topic modeling in R with Twitter data. Twitmo provides a broad range of methods to sample, pre-process and visualize contents of geo-tagged tweets to make modeling the public discourse easy and accessible.

Installation

You can install Twitmo from CRAN with:

install.packages("Twitmo")

You can install Twitmo from Github with:

Before you install from Github make sure you have Rtools for Windows or macOS already installed.

## install remotes package if it's not already
if (!requireNamespace("remotes", quietly = TRUE)) {
  install.packages("remotes")
}

## install dev version of Twitmo from github
remotes::install_github("abuchmueller/Twitmo")

Collecting geo-tagged tweets

Make sure you have a regular Twitter Account before start to sample your tweets.

# Live stream tweets from the UK for 30 seconds and save to "uk_tweets.json" in current working directory
get_tweets(method = 'stream', 
           location = "GBR", 
           timeout = 30, 
           file_name = "uk_tweets.json")

# Use your own bounding box to stream US mainland tweets
get_tweets(method = 'stream', 
           location = c(-125, 26, -65, 49), 
           timeout = 30,
           file_name = "tweets_from_us_mainland.json")

Load your tweets from a json file into a data frame

A small sample with raw tweets is included in the package. Access via:

raw_path <- system.file("extdata", "tweets_20191027-141233.json", package = "Twitmo")
mytweets <- load_tweets(raw_path)
#>  Found 167 records... Found 193 records... Imported 193 records. Simplifying...

Pool tweets into long pseudo-document

pool <- pool_tweets(mytweets)
#> 
#> 193 Tweets total
#> 158 Tweets without hashtag
#> Pooling 35 Tweets with hashtags #
#> 56 Unique hashtags total
#> Begin pooling ...Done
pool.corpus <- pool$corpus
pool.dfm <- pool$document_term_matrix

Find optimal number of topics

find_lda(pool.dfm)

Fitting a LDA model

model <- fit_lda(pool.dfm, n_topics = 7)

View most relevant terms for each topic

lda_terms(model)
#>      Topic.1       Topic.2   Topic.3 Topic.4       Topic.5 Topic.6    Topic.7
#> 1      today         music beautiful   paola           job    good   downtown
#> 2     laurel       holiday      life    says          link    meet  knoxville
#> 3       glen          time    season   puppy           bio  people       like
#> 4   trailing      birthday      like  church tenrestaurant   first         us
#> 5       oaks     girlhappy   posting     job         click     big       care
#> 6    tuscany birthdaytasha      olde      us           see  always     theres
#> 7         ii         today       end    link         crazy    love    nothing
#> 8     design       morning      days     bio       covered    last      quite
#> 9  perfectly         early    grains     see        waffle   night         tn
#> 10     sized    photoshoot      sand  sunday        sooooo     fun especially

or which hashtags are heavily associated with each topic

lda_hashtags(model)
#>                      Topic
#> mood                     4
#> motivate                 5
#> healthcare               7
#> mrrbnsnathome            5
#> newyork                  5
#> breakfast                5
#> thisismyplace            4
#> p4l                      4
#> chinup                   4
#> sundayfunday             4
#> saintsgameday            4
#> instapuppy               4
#> woof                     4
#> tailswagging             4
#> tickfire                 1
#> msiclassic               3
#> nyc                      6
#> about                    6
#> joethecrane              6
#> government               5
#> ladystrut19              2
#> ladystrutaccessories     2
#> smartnews                5
#> sundaythoughts           2
#> sf100                    6
#> openhouse                1
#> springtx                 1
#> labor                    5
#> norfolk                  5
#> oprylandhotel            3
#> pharmaceutical           5
#> easthanover              4
#> sales                    4
#> scryingartist            3
#> beautifulskyz            3
#> knoxvilletn              7
#> downtownknoxville        7
#> heartofservice           2
#> youthmagnet              2
#> youthmentor              2
#> bonjour                  2
#> trump2020                6
#> spiritchat               7
#> columbia                 3
#> newcastle                4
#> oncology                 5
#> nbatwitter               1
#> detroit                  5

Inspecting LDA distributions

Check the distribution of your LDA Model with

lda_distribution(model)
#>                         V1    V2    V3    V4    V5    V6    V7
#> mood                 0.001 0.001 0.001 0.996 0.001 0.001 0.001
#> motivate             0.001 0.001 0.001 0.001 0.995 0.001 0.001
#> healthcare           0.001 0.001 0.001 0.001 0.001 0.001 0.996
#> mrrbnsnathome        0.002 0.002 0.002 0.002 0.990 0.002 0.002
#> newyork              0.002 0.002 0.002 0.002 0.990 0.002 0.002
#> breakfast            0.002 0.002 0.002 0.002 0.990 0.002 0.002
#> thisismyplace        0.001 0.001 0.001 0.995 0.001 0.001 0.001
#> p4l                  0.001 0.001 0.001 0.995 0.001 0.001 0.001
#> chinup               0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> sundayfunday         0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> saintsgameday        0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> instapuppy           0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> woof                 0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> tailswagging         0.003 0.003 0.003 0.980 0.003 0.003 0.003
#> tickfire             0.996 0.001 0.001 0.001 0.001 0.001 0.001
#> msiclassic           0.001 0.001 0.995 0.001 0.001 0.001 0.001
#> nyc                  0.001 0.001 0.001 0.001 0.001 0.997 0.001
#> about                0.001 0.001 0.001 0.001 0.001 0.997 0.001
#> joethecrane          0.001 0.001 0.001 0.001 0.001 0.997 0.001
#> government           0.001 0.001 0.001 0.001 0.996 0.001 0.001
#> ladystrut19          0.001 0.996 0.001 0.001 0.001 0.001 0.001
#> ladystrutaccessories 0.001 0.996 0.001 0.001 0.001 0.001 0.001
#> smartnews            0.000 0.000 0.000 0.000 0.997 0.000 0.000
#> sundaythoughts       0.000 0.997 0.000 0.000 0.000 0.000 0.000
#> sf100                0.001 0.001 0.001 0.001 0.001 0.996 0.001
#> openhouse            0.998 0.000 0.000 0.000 0.000 0.000 0.000
#> springtx             0.998 0.000 0.000 0.000 0.000 0.000 0.000
#> labor                0.001 0.001 0.001 0.001 0.996 0.001 0.001
#> norfolk              0.001 0.001 0.001 0.001 0.996 0.001 0.001
#> oprylandhotel        0.001 0.001 0.996 0.001 0.001 0.001 0.001
#> pharmaceutical       0.001 0.001 0.001 0.001 0.996 0.001 0.001
#> easthanover          0.001 0.001 0.001 0.996 0.001 0.001 0.001
#> sales                0.001 0.001 0.001 0.996 0.001 0.001 0.001
#> scryingartist        0.001 0.001 0.996 0.001 0.001 0.001 0.001
#> beautifulskyz        0.001 0.001 0.996 0.001 0.001 0.001 0.001
#> knoxvilletn          0.001 0.001 0.001 0.001 0.001 0.001 0.995
#> downtownknoxville    0.001 0.001 0.001 0.001 0.001 0.001 0.995
#> heartofservice       0.002 0.985 0.002 0.002 0.002 0.002 0.002
#> youthmagnet          0.002 0.985 0.002 0.002 0.002 0.002 0.002
#> youthmentor          0.002 0.985 0.002 0.002 0.002 0.002 0.002
#> bonjour              0.001 0.995 0.001 0.001 0.001 0.001 0.001
#> trump2020            0.001 0.001 0.001 0.001 0.001 0.995 0.001
#> spiritchat           0.001 0.001 0.001 0.001 0.001 0.001 0.997
#> columbia             0.001 0.001 0.996 0.001 0.001 0.001 0.001
#> newcastle            0.001 0.001 0.001 0.997 0.001 0.001 0.001
#> oncology             0.001 0.001 0.001 0.001 0.996 0.001 0.001
#> nbatwitter           0.997 0.000 0.000 0.000 0.000 0.000 0.000
#> detroit              0.001 0.001 0.001 0.001 0.995 0.001 0.001

Filtering tweets

Sometimes you can build better topic models by blacklisting or whitelisting certain keywords from your data. You can do this with a keyword dictionary using the filter_tweets() function. In this example we exclude all tweets with “football” or “mood” in them from our data.

mytweets %>% dim()
#> [1] 193  92
filter_tweets(mytweets, keywords = "football,mood", include = FALSE) %>% dim()
#> [1] 183  92

Analogously if you want to run your collected tweets through a whitelist use

mytweets %>% dim()
#> [1] 193  92
filter_tweets(mytweets, keywords = "football,mood", include = TRUE) %>% dim()
#> [1] 10 92

Fitting a structural topic model (STM)

Structural topic models can be fitted with additional external covariates. In this example we metadata that comes with the tweets such as retweet count. This works with parsed unpooled tweets. Pre-processing and fitting is done with one function.

stm_model <- fit_stm(mytweets, n_topics = 7, xcov = ~ retweet_count + followers_count + reply_count + quote_count + favorite_count,
                     remove_punct = TRUE,
                     remove_url = TRUE,
                     remove_emojis = TRUE,
                     stem = TRUE,
                     stopwords = "en")

STMs can be inspected via

summary(stm_model)
#> A topic model with 7 topics, 137 documents and a 324 word dictionary.
#> Topic 1 Top Words:
#>       Highest Prob: like, will, come, help, look, live, fun 
#>       FREX: hors, intellig, fun, come, enjoy, post, question 
#>       Lift: anytim, eddi, floyd, gameday, gave, hors, ranch 
#>       Score: stop, hors, will, come, like, help, anytim 
#> Topic 2 Top Words:
#>       Highest Prob: last, sunday, know, win, season, want, show 
#>       FREX: win, know, night, way, last, sunday, area 
#>       Lift: way, area, photo, three, night, win, boy 
#>       Score: area, last, win, sunday, night, know, action 
#> Topic 3 Top Words:
#>       Highest Prob: game, get, time, trump, can, just, love 
#>       FREX: game, love, week, al-baghdadi, parti, won, fuck 
#>       Lift: ’re, baghdadi, bin, counti, els, fail, import 
#>       Score: parti, game, love, trump, week, get, time 
#> Topic 4 Top Words:
#>       Highest Prob: one, day, today, open, church, even, life 
#>       FREX: church, rain, open, now, market, day, one 
#>       Lift: fat, finish, view, church, market, rain, special 
#>       Score: support, day, today, church, rain, open, one 
#> Topic 5 Top Words:
#>       Highest Prob: see, job, bio, link, click, might, best 
#>       FREX: job, bio, link, click, might, need, isi 
#>       Lift: bio, link, might, anyon, better, democrat, develop 
#>       Score: isi, bio, link, job, click, hire, recommend 
#> Topic 6 Top Words:
#>       Highest Prob: morn, place, first, read, team, bad, back 
#>       FREX: morn, place, colleg, lose, made, back, told 
#>       Lift: morn, place, back, championship, colleg, fall, famili 
#>       Score: made, morn, place, lose, found, colleg, huh 
#> Topic 7 Top Words:
#>       Highest Prob: think, say, school, feel, set, good, happen 
#>       FREX: feel, say, school, set, downtown, truth, anyth 
#>       Lift: anyth, benefit, excel, feel, talk, thank, yet 
#>       Score: feel, school, think, set, say, everyon, happen

Visualizing models with LDAvis

Make sure you have LDAvis and servr installed.

## install LDAvis package if it's not already
if (!requireNamespace("LDAvis", quietly = TRUE)) {
  install.packages("LDAvis")
}

## install servr package if it's not already
if (!requireNamespace("servr", quietly = TRUE)) {
  install.packages("servr")
}

Export fitted models into interactive LDAvis visualizations with one line of code

to_ldavis(model, pool.corpus, pool.dfm)
## for STM use (included in the stm package)
stm::toLDAvis(stm_model, stm_model$prep$documents)

Plotting geo-tagged tweets

Plot your tweets onto a static map

plot_tweets(mytweets, region = "USA(?!:Alaska|:Hawaii)", alpha=0.1)

or plot the distribution of a certain hashtag onto a static map (UK data not included)

plot_hashtag(uk_tweets, region = "UK", hashtag = "foodwaste", ignore_case=TRUE, alpha=0.2)

Interactive maps with leaflet

Use scroll wheel to zoom into and out of the map. Click markets to see tweets. Make sure you have the leaflet package installed.

## install leaflet package if it's not already
if (!requireNamespace("leaflet", quietly = TRUE)) {
  install.packages("leaflet")
}

cluster_tweets(mytweets)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.