The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The following code installs the package and makes sure all requirements, prompting the user to install dependencies, in order to allow analyses to work.
VWRfirstrun() checks all system requiremements for specific functions, and gives the opportunity to download and install each of them.
The first stage of the analysis assumes that a preprocessed Freesurfer subjects directory is present. However, this code makes use of an already-extracted cortical thickness (CT) dataset made available on the VertexWiseR git repository.
The following commented out code is the script which was used to produce this demo data with the SPRENG dataset (Spreng et al. 2022):
#SURFvextract(sdirpath = SUBJECTS_DIR, filename = "SPRENG_CTv", template='fsaverage5', measure = 'thickness', subj_ID = T)
The surface can be loaded straight from the online repository and then smoothed :
SPRENG_CTv = readRDS(file = url("https://github.com/CogBrainHealthLab/VertexWiseR/blob/main/inst/demo_data/SPRENG_CTv_site1.rds?raw=TRUE"))
SPRENG_CTv_smoothed = smooth_surf(SPRENG_CTv, 10)
The SPRENG behavioural data (for participants in site 1, SPRENG_behdata_site1.csv) is accessible from the VertexWiseR package internal data:
To run the vertex-wise model analysis with random field theory-based cluster correction, testing for the effect of age, controlling for sex, on CT:
model1_RFT=RFT_vertex_analysis(model = dat_beh[,c("sex","age")],
contrast = dat_beh[,"age"], surf_data = SPRENG_CTv_smoothed, p = 0.05)
## $`Positive contrast`
## clusid nverts P X Y Z tstat region
## 1 1 142 0.015 -22.8 11.5 -42 6.45 lh-temporalpole
##
## $`Negative contrast`
## clusid nverts P X Y Z tstat
## 1 1 8039 <0.001 47 4.0 -16.6 -12.64
## 2 2 7660 <0.001 -34 -25.7 16.2 -14.23
## region
## 1 rh-superiortemporal
## 2 lh-insula
To run the vertex-wise model analysis with threshold-free cluster enhancement-based cluster correction, testing for the effect of age, controlling for sex, on CT; with 1000 permutations:
model1_TFCE=TFCE_vertex_analysis(model= dat_beh[,c("sex","age")],
contrast = dat_beh[,"age"],
surf_data=SPRENG_CTv_smoothed,
nperm=1000,
nthread=4)
TFCEoutput = TFCE_threshold(model1_TFCE, p=0.05)
## $`Positive contrast`
## [1] "No significant clusters"
##
## $`Negative contrasts`
## clusid nverts P X Y Z tstat region
## 1 1 8098 <0.001 47 4.0 -16.6 12.64 rh-superiortemporal
## 2 2 7728 <0.001 -34 -25.7 16.2 14.23 lh-insula
To plot the results of both models on an inflated fsaverage5 surface:
tmaps = rbind(model1_RFT$thresholded_tstat_map, TFCEoutput$thresholded_tstat_map)
plot_surf(surf_data = tmaps,
filename ='SPRENG_tstatmaps.png',
surface = 'inflated',
title=c("RFT-corrected\nclusters", "TFCE-corrected\nclusters"),
cmap='RdBu_r',
show.plot.window=FALSE)
To run meta-analytic decoding of the significant negative clusters (the neurosynth dataset needs to be installed as VWRfirstrun() allows):
## keyword r
## 538 retrieval 0.065
## 202 episodic 0.059
## 348 memory 0.054
## 198 engagement 0.048
## 332 linguistic 0.048
## 439 older 0.047
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.