The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Virusparies

Virusparies is an R package designed for visualizing outputs from VirusHunterGatherer, a data-driven virus discovery (DDVD) tool. It provides a set of plotting functions that aid in the interpretation and analysis of viral sequence data. The name draws inspiration from the hunter-gatherer metaphor, with “paries” derived from Latin meaning “wall”. It symbolizes the parietal art left by ancient hunters and gatherers on walls, summarizing their stories and beliefs.

VirusHunterGatherer is a computational pipeline designed for DDVD and is available on: https://github.com/lauberlab/VirusHunterGatherer. It involves two steps: (i) VirusHunter conducts sensitive homology-based detection of viral sequence reads in unprocessed data, identifying the most conserved regions of a virus, which serve as seeds for the (ii) Virusgatherer step that assembles full-length viral genome sequences.

Installation

To install the development version of Virusparies from GitHub, follow these steps:

### First install the "remotes" package

install.packages("remotes")

### Then install the Virusparies package

remotes::install_github("SergejRuff/Virusparies")

! Bioconductor/CRAN version coming soon …

Overview

Virusparies includes the following functions:

Import

VirusHunterGatherer Plots:

VirusGatherer only plots:

Graphical Tables(GT):

The table functions generate GT objects, which can be further manipulated using the GT package (see the Details section for more information).

Export:

Utils:

Details

The Virusparies package provides a set of plotting functions tailored for visualizing VirusHunterGatherer hittables and generating graphical tables (GT) for results generated by Virusparies or the user. It includes functions for importing VirusHunterGatherer hittables and exporting both plots and graphical tables. This section explains the functionality of each function in detail.

Each function accepts a VirusHunterGatherer file (vh_file argument), a column for grouping on the x-axis (x_column or groupby argument), a y_column argument and a cutoff for filtering observations below the user-defined e-value threshold. Key points to note: - Accepted x_column (or groupby) arguments are “best_query” (only for VirusHunter hittables) or “ViralRefSeq_taxonomy” (Default: “best_query”). - The cutoff is defined by the “ViralRefSeq_E” column. - The default cutoff e-value is 1e⁻⁵, but users can set their own cutoff e-values. - Cutoffs are used for filtering observations above the defined threshold. Unless the thing being used for plotting is the “ViralRefSeq_E” column (see :Boxplot 1: “ViralRefSeq_E” or both scatterplots as an example). In those cases the unfiltered hittable is plotted and the cutoff is used to highlight the proportion of e-values above and below the threshold. - Each plot includes a legend based on the Phylum of each virus group (expect for the faceted scatter plot, where each point is colored based on whether the observation is above or below the threshold). - Both table and plot functions provide arguments for customization.

Table functions return a GT object, and plot functions returns a ggplot2 object for further manipulation. Some plots also generate and return summary statistics or filtered VirusHunterGatherer files for further downstream analysis.

First, we load the package into R:

### load Virusparies into R

library(Virusparies)

Import

VirusHunterGatherer hittables are tab-separated values (TSV) files that can be imported with the ImportVirusTable() function. Here, we use the example VirusHunter and VirusGatherer hittable files included in the Virusparies package:

### Import VirusHunter Hittable.

path <- system.file("extdata", "virushunter.tsv", package = "Virusparies")
vh_file <- ImportVirusTable(path)

print(head(vh_file))  # print head of hunter files

#>      SRA_run SRA_sample SRA_study   host_taxon host_taxid num_queries num_hits  best_E
#> 1 SRR10822543 SRS5937532 SRP239389 Homo_sapiens       9606           8       12 4.5e-05
#> 2 SRR12567985 SRS7305728 SRP279687 Homo_sapiens       9606           6        9 9.7e-13
#> 3 SRR12567985 SRS7305728 SRP279687 Homo_sapiens       9606           6        5 1.4e-08
#> 4 SRR10822560 SRS5937549 SRP239389 Homo_sapiens       9606          11        3 1.1e-08
#> 5 SRR12567985 SRS7305728 SRP279687 Homo_sapiens       9606           6        8 3.2e-10
#> 6 SRR10822546 SRS5937535 SRP239389 Homo_sapiens       9606           7       20 1.0e-01
#>       best_query ViralRefSeq_E ViralRefSeq_ident ViralRefSeq_aLen.sLen ViralRefSeq_contigs
#> 1 Anello_ORF1core      2.59e-38              93.8             192 / 194                   1
#> 2 Anello_ORF1core      8.44e-36              77.3             225 / 227                   6
#> 3 Anello_ORF1core      3.95e-34              70.1             231 / 232                   1
#> 4 Anello_ORF1core      3.69e-31              68.6             210 / 216                   1
#> 5 Anello_ORF1core      5.85e-31              76.9             195 / 201                   3
#> 6 Anello_ORF1core      8.63e-31              79.4             189 / 237                   1
#>                                                                               ViralRefSeq_subject
#> 1 gi:1464307144|Torque teno mini virus 11 isolate LIL-y2 ORF2, ORF1, and ORF3 genes, complete cds
#> 2                   gi:1464307216|Torque teno midi virus 11 DNA, complete genome, isolate: MDJN47
#> 3 gi:1464307144|Torque teno mini virus 11 isolate LIL-y2 ORF2, ORF1, and ORF3 genes, complete cds
#> 4                                          gi:134133206|Torque teno midi virus 1, complete genome
#> 5                   gi:1464307186|Torque teno midi virus 5 DNA, complete genome, isolate: MDJHem2
#> 6                   gi:1464307221|Torque teno midi virus 12 DNA, complete genome, isolate: MDJN51
#>                           ViralRefSeq_taxonomy date_analyzed
#> 1  taxid:2065037|Betatorquevirus|Anelloviridae    2022-05-17
#> 2 taxid:2065052|Gammatorquevirus|Anelloviridae    2022-05-06
#> 3  taxid:2065037|Betatorquevirus|Anelloviridae    2022-05-06
#> 4  taxid:687379|Gammatorquevirus|Anelloviridae    2022-05-17
#> 5 taxid:2065046|Gammatorquevirus|Anelloviridae    2022-05-06
#> 6 taxid:2065053|Gammatorquevirus|Anelloviridae    2022-05-17


### Import VirusGatherer Hittable.

path2 <- system.file("extdata", "virusgatherer.tsv", package = "Virusparies")
vg_file <- ImportVirusTable(path2)

print(head(vg_file))  # print head of gatherer files

#>       SRA_run SRA_sample SRA_study   host_taxon host_taxid                 contig_id
#>  1   ERR206007  ERS074208 ERP000373 Homo sapiens       9606   ERR206007_cap3_Contig-1
#>  2   ERR206007  ERS074208 ERP000373 Homo sapiens       9606   ERR206007_cap3_Contig-2
#>  3   ERR206007  ERS074208 ERP000373 Homo sapiens       9606   ERR206007_cap3_Contig-3
#>  4   ERR206007  ERS074208 ERP000373 Homo sapiens       9606   ERR206007_cap3_Contig-4
#>  5   ERR206021  ERS074222 ERP000373 Homo sapiens       9606   ERR206021_cap3_Contig-1
#>  6 SRR10822543 SRS5937532 SRP239389 Homo sapiens       9606 SRR10822543_cap3_Contig-1
#>    contig_len ViralRefSeq_E ViralRefSeq_ident ViralRefSeq_aLen
#>  1        603      4.22e-65            92.453              106
#>  2        461      3.22e-65            85.612              139
#>  3        364      2.46e-53            76.531               98
#>  4        334      9.87e-67            93.636              110
#>  5        323      8.91e-45            65.421              107
#>  6       3321      0.00e+00            86.058              789
#>                                                       ViralRefSeq_subject
#>  1                            acc:YP_009505712|Orf1 [Torque teno virus 5]
#>  2 acc:YP_003587853|hypothetical protein TTV10_gp4 [Torque teno virus 10]
#>  3                            acc:YP_003587868|ORF1 [Torque teno virus 3]
#>  4                           acc:YP_009505715|Orf1 [Torque teno virus 11]
#>  5        acc:YP_009505729|unnamed protein product [Torque teno virus 24]
#>  6                        acc:YP_009173866|polymerase [Hepatitis B virus]
#>                                                                                                ViralRefSeq_taxonomy
#>  1                                              taxid:687344|Alphatorquevirus homin5|Alphatorquevirus|Anelloviridae
#>  2                                             taxid:687349|Alphatorquevirus homin10|Alphatorquevirus|Anelloviridae
#>  3                                              taxid:687342|Alphatorquevirus homin3|Alphatorquevirus|Anelloviridae
#>  4                                                                      taxid:687350|Alphatorquevirus|Anelloviridae
#>  5                                             taxid:687363|Alphatorquevirus homin24|Alphatorquevirus|Anelloviridae
#>  6 taxid:10407|Orthohepadnavirus|Hepadnaviridae|Blubervirales|Revtraviricetes|Artverviricota|Pararnavirae|Riboviria
#>    date_analyzed
#>  1    2024-05-18
#>  2    2024-05-18
#>  3    2024-05-18
#>  4    2024-05-18
#>  5    2024-05-17
#>  6    2024-05-18

VirusHunterGatherer Plot - VhgBoxplot

The VhgBoxplot() function generates three versions of a boxplot depending on the provided y_column argument.

Accepted y_column arguments are: - “ViralRefSeq_E”: Distribution of viral reference E-values. - “ViralRefSeq_ident”: Distribution of sequence identity to the closest viral reference. - “contig_len” (Gatherer Tables only): Distribution of contig lengths.

Below are 4 examples for different boxplots.

Boxplot 1: “ViralRefSeq_E”



### Plot 1 for evalues
plot1 <- VhgBoxplot(vh_file, x_column = "best_query", y_column = "ViralRefSeq_E")
plot1
Boxplot E-values

Boxplot 2: “ViralRefSeq_ident”


### Plot 2 for identity
plot2 <- VhgBoxplot(vh_file, x_column = "best_query", y_column = "ViralRefSeq_ident")
plot2
Boxplot ViralRefSeq_ident

Boxplot 3: Customization

Plots and tables in Virusparies are highly customizable. This is true for all functions in Virusparies. Example 3 demonstrates it by changing the text of the subtitle and axis-labels, changing the position of the legend and changing the background theme.


### Plot 3 custom arguments used
plot3 <- VhgBoxplot(vh_file,
                   x_column = "best_query",
                   y_column = "ViralRefSeq_E",
                   theme_choice = "grey",
                   subtitle = "Custom subtitle: Identity for custom query",
                   xlabel = "Custom x-axis label: Custom query",
                   ylabel = "Custom y-axis label: Viral Reference Evalue in -log10 scale",
                   legend_position = "right")
plot3
Boxplot Customization

Boxplot 4: “contig_len” (Gatherer Tables only)


### Plot 5: Virusgatherer plot for SRA_runs agains contig length
plot4 <- VhgBoxplot(vg_file,x_column = "ViralRefSeq_taxonomy",y_column = "contig_len")
plot4
Boxplot Gatherer

VirusHunterGatherer Plot - VhgIdenFacetedScatterPlot

VhgIdenFacetedScatterPlot() generates a scatter plot with viral reference identity (“ViralRefSeq_ident” column) on the x-axis and the -log10 of Viral reference e-values (“ViralRefSeq_E”) on the y-axis. Observations are colored based on whether they are below or above the specified threshold. By default blue points indicate observations with e-values below the threshold and red indicates points above the threshold. The VhgIdenFacetedScatterPlot() creates faceted plots for each group defined by groupby. This allows the user to better separate virus groups into different plots,especially in cases where multiple groups cluster to closely together and are no longer distinguishable in the VhgIdentityScatterPlot() plot.


### Generate Plot

plot <- VhgIdenFacetedScatterPlot(vh_file,cutoff = 1e-5)
plot
VhgIdenFacetedScatterPlot

VirusHunterGatherer Plot - VhgIdentityScatterPlot

VhgIdentityScatterPlot() generates a scatter plot with viral reference sequence identity (“ViralRefSeq_ident” column) on the x-axis and the -log10 of viral reference e-values (“ViralRefSeq_E”) on the y-axis.

A red horizontal line (see figure below) indicates whether an observation is above or below threshold.


### Basic plot

plot <- VhgIdentityScatterPlot(vh_file,cutoff = 1e-5)
plot(plot)
VhgIdentityScatterPlot

VirusHunterGatherer Plot - VhgRunsBarplot

VhgRunsBarplot() takes a VirusHunterGatherer file as input and plots the distribution of viral groups detected across query sequences. The cutoff is applied to filter out specific observations above a specified threshold. This means that if 10 unique SRA-runs (or local FASTQ Files) detect a viral group, but only 9 have values below the threshold, then only those 9 will be plotted.

In the example below, we have 9 datasets (SRA_runs). We use “best_query” (groupby) for grouping on the x-axis (here inverted) and see the total number of datasets with hits for each group on the y-axis. Anello_ORF1core is found in all 9 files, - 5 datasets contain observations for Hepadna-Nackedna_TP and both Gemini_Rep and Genomo_Rep have only 1.


### Generate Plot

plot <- VhgRunsBarplot(vh_file,cut = 1e-5)
plot
VhgRunsBarplot

VirusHunter Plot - VhSumHitsBarplot

VhSumHitsBarplot() plots the sum of reads/micro-contigs/contigs (“best_query”) for each virus group specified by the groupby argument. The cutoff value is used to filter out observations above the threshold.

The VhSumHitsBarplot() function generates one of three bar plot versions, depending on the specified y_column argument.

Accepted y_column arguments are: - “num_hits”: Number of reads in each group. - “ViralRefSeq_contigs”: Number of micro-contigs in each group. - “contig” (Gatherer Tables only): Number of contigs in each group.

The example below shows that a total of 12704 hits exist in our data, but almost 89 % of the hits mactch to Hepadna-Nackedna_TP, followed by Anello_ORF1core with 11.24 % and less than 1 % for both Genomo_Rep and Gemini_Rep. 


### Generate Plot for reads per group

plot <- VhSumHitsBarplot(vh_file,cut = 1e-5,
                                y_column = "num_hits")
plot$plot
VhSumHitsBarplot

### Generate Plot for micro-contigs per group
plot_micro <- VhgSumHitsBarplot(vh_file,cut = 1e-5,
                                y_column = "ViralRefSeq_contigs")
plot_micro$plot
VhSumHitsBarplot

### Generate Plot for assembled contigs per group (Gatherer only)
contig_plot <- VhgSumHitsBarplot(vg_file,groupby = "ViralRefSeq_taxonomy",
                                 y_column = "contig")
contig_plot$plot
VhSumHitsBarplot

VirusGatherer only plots - VgConLenViolin

VgConLenViolin() accepts only VirusGatherer hittables as input and generates a violin plot for contig lengths across viral groups. Violin plots require at least two data points; if only a single data point is available, a dot is displayed by default (see plot). Users can also set a minimum threshold for observations, and groups with fewer than this threshold are excluded from the plot.


# create a violinplot.
violinplot <- VgConLenViolin(vg_file=vg_file,cut = 1e-5,log10_scale = TRUE)

violinplot$plot
VgConLenViolin

GT - VhgRunsTable

VhgRunsTable() function takes VirusHunter files as input and generates a graphical table, providing information about which run has found which virus group. This makes it a valuable complement to the VhgRunsBarplot() function. While VhgRunsBarplot() provides information in a plot that quantifies the number of unique runs finding a virus group, VhgRunsTable() presents the same information in table form, showing which runs are found along with their names (SRA accessions, FASTQ).

VhgRunsBarplot() plots the distribution of viral groups detected across query sequences, but does not provide information about, which dataset detects a specific virus group. In the example above, we see that 5 datasets contain observations for Hepadna-Nackedna_TP, but only VhgRunsTable() shows which files specifically detect Hepadna-Nackedna_TP (see table below).



### Generate table with defaul arguments

table <- VhgRunsTable(vh_file,cut = 1e-5)
table
VhgRunsTable

GT - VhgTabularRasa

This function creates a formatted table using the GT package, based on input data with specified column names. It is useful for generating tables that cannot be produced with VhgRunsTable(). Users have the option to generate tables with the same styling as those generated by the VhgRunsTable() function but for the summary statistics objects generated by the Virusparies plot functions or the user-defined objects.

In the example below we generate a table for the summary statistics output for VhgBoxplot() where y_column = “ViralRefSeq_ident” with the same style as the output from the VhgRunsTable() function.



### Plot boxplot for "identity"

identity <- VhgBoxplot(vh_file,y_column = "ViralRefSeq_ident")

# Generate table

VhgTabularRasa(identity$summary_stats)
VhgTabularRasa

Export

Export Data frames

Processed VirusHunterGatherer hittables and summary statistic tables can be exported as CSV or TSV files using the ExportVirusDataFrame() function.



# generate a plot that returns both processed hittables (outlier) and summary stats
plot1 <- VhgBoxplot(vh_file, x_column = "best_query", y_column = "ViralRefSeq_E")




# export hittable as tsv (same format as input hittables)
ExportVirusDataFrame(df=plot1$outlier,file_name="outlier",file_type="tsv")

# export summary stats as csv
ExportVirusDataFrame(df=plot1$summary_stats,file_name="summarystats",file_type="csv")

Export Plots

Plots can be exported in various formats using the ExportVirusPlot() function. Supported formats include “eps”, “ps”, “tex”, “pdf”, “jpeg”, “tiff”, “png”, “bmp”, “svg”, and “wmf” (Windows only). When the device argument is set to NULL, the file extension in the filename determines the export format.



### Generate Basic plot

plot <- VhgIdentityScatterPlot(vh_file,cutoff = 1e-5)


### Export plot

ExportVirusPlot(plot=plot,file_name="testplot.png",width=8,height=6,units="in")

! Depending on the plot, the final image might be cropped or truncated. Experiment with height, width, and resolution.

Export Graphical Tables

The ExportVirusGt() function utilizes the gtsave() function from the GT package to export graphical tables in various formats. This feature is currently in an experimental phase and may not operate as expected. ! Please note that exporting PNG and PDF files requires Google Chrome or a Chromium-based browser.



### Using first 10 rows of SRA_run,num_hits,bestquery,ViralRefSeq_E and Identity col.

vh_file_part <- vh_file[c(1:10),c(1,7,9,10,11)]

### Generating a gt

table <- VhgTabularRasa(vh_file_part,title = "first 10 rows of vh_file",subtit =
"example for any table",names_ = c("Runs","Number of Contigs","Best Query Result",
"Reference E-Value","Refrence Identity"))

### Export gt as docx file

ExportVirusGt(gtable=table,filename="vh_parttable.docx")

Utils

Virusparies includes utility functions to process VirusHunterGatherer hittables, extract targeted information, and update the internal ICTV dataset.

CombineHittables

Multiple hittables can be combined using the CombineHittables() function, provided they are of the same type (e.g., VirusHunter hittables can only be combined with other VirusHunter hittables).


path <- system.file("extdata", "virushunter.tsv", package = "Virusparies")
file <- ImportVirusTable(path)
file2 <- ImportVirusTable(path)  # both files have 180 observations

combined_file <- CombineHittables(file,file2)

print(nrow(combined_file))

VhgPreprocessTaxa

VhgPreprocessTaxa() extracts user-defined taxonomy information from the ViralRefSeq_taxonomy column, which contains taxa data separated by “|” (e.g., “taxid:2065037|Betatorquevirus|Anelloviridae”). In the example below, if the virus family is selected, only families ending with “viridae” (e.g., “Anelloviridae”) will remain in the processed ViralRefSeq_taxonomy column. When family information is unavailable, other taxa details are compared with the internal ICTV dataset to infer the phylum. If a phylum is found, the observation is classified as “unclassified” followed by the phylum name from the ICTV dataset. Otherwise, the term “unclassified” is used.

VhgPreprocessTaxa() is used internally by various Virusparies functions. However, as the size of both the hittables and ICTV dataset increases, the processing time also grows. This makes VhgPreprocessTaxa() a potential bottleneck in terms of execution speed. Therefore, we recommend preprocessing taxonomy information with VhgPreprocessTaxa() before generating plots or graphical tables for large hittables.


path <- system.file("extdata", "virushunter.tsv", package = "Virusparies")
file <- ImportVirusTable(path)

file_filtered <- VhgPreprocessTaxa(file,"Family")

print("ViralRefSeq_taxonomy before processing:")
print(head(file$ViralRefSeq_taxonomy,5))

#>[1] "taxid:2065037|Betatorquevirus|Anelloviridae" 
#>[2] "taxid:2065052|Gammatorquevirus|Anelloviridae"
#>[3] "taxid:2065037|Betatorquevirus|Anelloviridae" 
#>[4] "taxid:687379|Gammatorquevirus|Anelloviridae" 
#>[5] "taxid:2065046|Gammatorquevirus|Anelloviridae"


print("ViralRefSeq_taxonomy after processing:")
print(head(file_filtered$ViralRefSeq_taxonomy,5))

#>[1] "Anelloviridae"
#>[2] "Anelloviridae"
#>[3] "Anelloviridae"
#>[4] "Anelloviridae"
#>[5] "Anelloviridae"

Citation

When utilizing Virusparies in your research or software development, kindly reference the R package using the citation obtained from the citation() function:


### Citation function

citation("Virusparies")

#> To cite package ‘Virusparies’ in publications use:
#> 
#>   Ruff S (2024). _Virusparies: Data Visualisations for
#>   VirusHunterGatherer hittables output_. R package version
#>   1.0.0, <https://github.com/SergejRuff/Virusparies>.

#> A BibTeX entry for LaTeX users is

#>   @Manual{,
#>     title = {Virusparies: Data Visualisations for VirusHunterGatherer hittables output},
#>     author = {Sergej Ruff},
#>     url = {https://github.com/SergejRuff/Virusparies},
#>     year = {2024},
#>     note = {R package version 1.0.0},
#>   }

Contributions

Sergej Ruff formulated the idea behind Virusparies and was responsible for its implementation.

Chris Lauber and Li Chuin Chong from Twincore - Centre for Experimental and Clinical Infection Research provided ideas for improvements. Chris Lauber is the main developer behind the VirusHuntergatherer software and the Group Leader of the Computational Virology working group at the Institute for Experimental Virology, TWINCORE.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.