The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In this document, we give you a brief overview of
the basic functionality of the actuaRE
package. For a more
detailed overview of the functions, you can consult the help-pages.
Please feel free to send any suggestions and bug reports to the package
author.
Multi-level factors (MLFs) are nominal variables with too many levels for ordinary generalized linear model (GLM) estimation (Ohlsson and Johansson 2010). Within the machine learning literature, these type of risk factors are better known as high-cardinality attributes (Micci-Barreca 2001). This package focuses on MLFs that exhibit a hierarchical structure and a typical example hereof, within workers’ compensation insurance, is the NACE code. In our illustration, we work with a hierarchical MLF that has two hierarchical levels: industry and branch. Figure 1 visualizes this hierarchical structure with a hypothetical example.
With the current version of the actuaRE
package, you are
able to fit random effects models with the following functional form
\[\begin{align*} g(E[Y_{ijkt} | U_j, U_{jk}]) &= \mu + \boldsymbol{x}_{ijkt}^\top \boldsymbol{\beta} + U_j + U_{jk} \\&= \zeta_{ijkt}.\\ \end{align*}\]
Here, \(Y_{ijkt}\) denotes the loss cost of risk profile \(i\) (based on the company-specific risk factors) operating in branch \(k\) within industry \(j\) at time \(t\). We calculate the loss cost as
\[\begin{align*} Y_{ijkt} = \frac{Z_{ijkt}}{w_{ijkt}} \end{align*}\] where \(Z_{ijkt}\) denotes the total claim cost and \(w_{ijkt}\) is an appropriate volume measure. \(g(\cdot)\) denotes the link function (for example the identity or log link), \(\mu\) the intercept, \(\boldsymbol{x}_{ijkt}\) the company-specific covariate vector and \(\boldsymbol{\beta}\) the corresponding parameter vector. With the model parameters \(\mu\) and \(\boldsymbol{\beta}\) we capture the company-specific effects. To assess the effect of the hierarchical MLF, we introduce the random effects \(U_j\) and \(U_{jk}\) which capture the unobservable effects of the industry and the branch in which the company operates. \(U_j\) denotes the industry-specific deviation from \(\mu + \boldsymbol{x}_{ijkt}^\top \boldsymbol{\beta}\) and \(U_{jk}\) denotes the branch-specific deviation from \(\mu + \boldsymbol{x}_{ijkt}^\top \boldsymbol{\beta} + U_{j}\). We assume that the random industry effects \(U_j\) are independent and identically distributed (i.i.d.) with \(E[U_j] = 0\) and \(Var(U_j) = \sigma_{I}^2\). Similarly, the random branch effects \(U_{jk}\) are assumed to be i.i.d. with \(E[U_{jk}] = 0\) and \(Var(U_{jk}) = \sigma_{B}^2\).
This package offers three different estimation methods to estimate
the model parameters:
- Hierarchical credibility model (Jewell 1975)
- Combining the
hierarchical credibility model with a GLM (Ohlsson 2008)
- Mixed models (Molenberghs and Verbeke 2005)
To illustrate the functions, we make use of two different data sets.
We illustrate the hierarchical credibility model of Jewell (Jewell 1975) using the Hachemeister (Hachemeister 1975) data set. The other
functions make use of the dataCar
data set.
To estimate the parameters using the hierarchical credibility model,
we use the function hierCredibility
. By default, the
additive hierarchical credibility model (Dannenburg, Kaas, and Goovaerts 1996) is
fit
\[\begin{align*} E[Y_{ijkt} | U_j, U_{jk}] &= \mu + U_j + U_{jk}. \end{align*}\]
capture.output(library(actuaRE), file = tempfile()) # suppress startup message
#> Loading required package: cplm
#> Loading required package: coda
#> Loading required package: Matrix
#> Loading required package: splines
#>
#> Package 'actuaRE' version 0.1.5
#>
#> This is version 0.1.5 of actuaRE
data("hachemeisterLong")
= hierCredibility(ratio, weight, cohort, state, hachemeisterLong)
fitHC
fitHC#> Call:
#> hierCredibility(Yijkt = ratio, wijkt = weight, sector = cohort,
#> group = state, data = hachemeisterLong)
#>
#>
#> Additive hierarchical credibility model
#>
#> Estimated variance parameters:
#> Individual contracts: 139120026
#> Var(V[jk]): 11628.45
#> Var(V[j]): 88476.11
#> Unique number of categories of cohort: 2
#> Unique number of categories of state: 5
To fit the multiplicative hierarchical credibility model (Ohlsson 2005) \[\begin{align*}
E[Y_{ijkt} | \widetilde{U}_j, \widetilde{U}_{jk}] &=
\tilde{\mu} \ \widetilde{U}_j \ \widetilde{U}_{jk}
\end{align*}\] you have to specify
type = "multiplicative"
.
= hierCredibility(ratio, weight, cohort, state, hachemeisterLong, type = "multiplicative")
fitHCMult fitHCMult
To get a summary of the model fit, we use the summary
function.
summary(fitHC)
#> Call:
#> hierCredibility(Yijkt = ratio, wijkt = weight, sector = cohort,
#> group = state, data = hachemeisterLong)
#>
#>
#> Additive hierarchical credibility model
#>
#> Estimated variance parameters:
#> Individual contracts: 139120026
#> Var(V[jk]): 11628.45
#> Var(V[j]): 88476.11
#> Unique number of categories of cohort: 2
#> Unique number of categories of state: 5
#>
#> Estimates at the cohort level:
#>
#> cohort zj Yjz_BarTilde qj Vj Uj
#> 1: 1 1.427755 1965.436 0.9157058 1946.859 201.8044
#> 2: 2 1.633248 1527.011 0.9255216 1543.250 -201.8044
#>
#> Estimates at the state level:
#>
#> cohort state wjk Yjk_BarTilde zjk Vjk Ujk
#> 1: 1 1 100155 2060.921 0.8932938 2048.750 101.89107
#> 2: 1 3 13735 1805.843 0.5344614 1871.491 -75.36785
#> 3: 2 2 19895 1511.224 0.6244749 1523.251 -19.99963
#> 4: 2 4 4152 1352.976 0.2576359 1494.229 -49.02155
#> 5: 2 5 36110 1599.829 0.7511373 1585.748 42.49796
To obtain the fitted values, we use the fitted
function
fitted(fitHC)
#> [1] 2048.750 2048.750 2048.750 2048.750 2048.750 2048.750 2048.750 2048.750
#> [9] 2048.750 2048.750 2048.750 2048.750 1871.491 1871.491 1871.491 1871.491
#> [17] 1871.491 1871.491 1871.491 1871.491 1871.491 1871.491 1871.491 1871.491
#> [25] 1523.251 1523.251 1523.251 1523.251 1523.251 1523.251 1523.251 1523.251
#> [33] 1523.251 1523.251 1523.251 1523.251 1494.229 1494.229 1494.229 1494.229
#> [41] 1494.229 1494.229 1494.229 1494.229 1494.229 1494.229 1494.229 1494.229
#> [49] 1585.748 1585.748 1585.748 1585.748 1585.748 1585.748 1585.748 1585.748
#> [57] 1585.748 1585.748 1585.748 1585.748
and we use ranef
to extract the estimated random
effects.
ranef(fitHC)
#> $sector
#> cohort Uj
#> 1: 1 201.8044
#> 2: 2 -201.8044
#>
#> $group
#> cohort state Ujk
#> 1: 1 1 101.89107
#> 2: 1 3 -75.36785
#> 3: 2 2 -19.99963
#> 4: 2 4 -49.02155
#> 5: 2 5 42.49796
We can inspect the estimated random effects using the function
plotRE
.
= plotRE(fitHC, plot = FALSE)
ggPlots 1]]
ggPlots[[2]] ggPlots[[
To obtain predictions for a new data frame, we use the
predict
function.
= hachemeisterLong[sample(1:nrow(hachemeisterLong), 5, F), ]
newDt predict(fitHC, newDt)
#> [1] 2048.750 1523.251 1523.251 1585.748 1585.748
To allow for company-specific risk factors, we extend the
multiplicative hierarchical credibility model to \[\begin{align*}
E[Y_{ijkt} | \widetilde{U}_j, \widetilde{U}_{jk}] &=
\tilde{\mu} \ \gamma_{ijkt} \ \widetilde{U}_j \ \widetilde{U}_{jk} =
\gamma_{ijkt} V_{jk}
\end{align*}\] where \(\gamma_{ijkt}\) denotes the effect of the
company-specific covariates. To estimate this model using Ohlsson’s GLMC
algorithm (Ohlsson 2008), we use can
either use the function hierCredGLM
or
hierCredTweedie
. hierCredGLM
allows the user
to specify the power parameter \(p\).
Conversely, hierCredTweedie
estimates the power parameter
\(p\) along with the other parameters
using the cpglm
function from the cplm
package.
data("dataCar")
= hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w)
fit summary(fit)
#> Call:
#> hierCredGLM(formula = Y ~ area + (1 | VehicleType/VehicleBody),
#> data = dataCar, weights = w)
#>
#>
#> Combination of the hierarchical credibility model with a GLM
#>
#> Estimated variance parameters:
#> Individual contracts: 4288715
#> Var(V[jk]): 349.22
#> Var(V[j]): 628.379
#> Unique number of categories of VehicleType: 2
#> Unique number of categories of VehicleBody: 9
#>
#> Results contract-specific risk factors:
#>
#>
#> Call:
#> glm(formula = FormulaGLM, family = tweedie(var.power = p, link.power = 0),
#> data = data, weights = data$wijkt, model = T, y = T)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -9.321 -6.751 -5.171 -3.311 111.342
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 5.63582 0.08857 63.630 <2e-16 ***
#> areaB 0.04804 0.13070 0.368 0.7132
#> areaC 0.07686 0.11758 0.654 0.5133
#> areaD -0.18602 0.15779 -1.179 0.2384
#> areaE 0.13070 0.16694 0.783 0.4337
#> areaF 0.46429 0.18616 2.494 0.0126 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for Tweedie family taken to be 978.1447)
#>
#> Null deviance: 3308780 on 67565 degrees of freedom
#> Residual deviance: 3298572 on 67560 degrees of freedom
#> AIC: NA
#>
#> Number of Fisher Scoring iterations: 7
We use the same syntax as used by the package lme4
to
specify the model formula. Here,
(1 | VehicleType / VehicleBody)
specifies a random effect
\(U_j\) for VehicleType
and a nested random effect \(U_{jk}\)
for VehicleBody
. We extract the estimated parameters using
fixef
(company-specific effects) and ranef
(random effects).
fixef(fit)
#> (Intercept) areaB areaC areaD areaE areaF
#> 5.63581573 0.04803789 0.07686029 -0.18601585 0.13069527 0.46428870
ranef(fit)
#> $sector
#> VehicleType Uj
#> 1: Common vehicle 0.9563139
#> 2: Uncommon vehicle 1.0514319
#>
#> $group
#> VehicleType VehicleBody Ujk
#> 1: Common vehicle HBACK 1.0249732
#> 2: Common vehicle SEDAN 0.9526347
#> 3: Common vehicle UTE 0.9970046
#> 4: Uncommon vehicle COUPE 1.0232527
#> 5: Uncommon vehicle HDTOP 1.0064355
#> 6: Uncommon vehicle MIBUS 1.0041799
#> 7: Uncommon vehicle PANVN 1.0023171
#> 8: Uncommon vehicle STNWG 0.9833459
#> 9: Uncommon vehicle TRUCK 1.0076538
In addition, the same functions as before can be used.
head(fitted(fit))
#> 1 2 3 4 5 6
#> 296.6857 274.7367 304.5521 240.6055 296.6857 320.2954
predict(fit, newdata = dataCar[1:2, ], type = "response")
#> 1 2
#> 296.6857 274.7367
= plotRE(fit, plot = FALSE) ggPlots
Alternatively, we can rely on the mixed models framework (Molenberghs and Verbeke 2005) to estimate the
model parameters. Here, we can use the function to estimate a Tweedie
generalized linear mixed model. Fitting the model, however, takes quite
some time. We can speed up the fitting process by providing some initial
estimates and this is exactly what the tweedieGLMM
function
does! Nonetheless, even with the initial estimates the fitting process
does take some time (approximately 5 minutes using Windows 10 with an
intel i7 and 32 gigabytes of RAM).
= tweedieGLMM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, verbose = TRUE) fitGLMM
For insurance applications, it is crucial that the models provide us a reasonable premium volume at portfolio level. Hereto, we examine the balance property [Bühlmann and Gisler (2006)](Wüthrich 2020) on the training set. That is, \[\begin{equation} \begin{aligned} \sum_{i, j, k, t} w_{ijkt} \ Y_{ijkt} &= \sum_{i, j, k, t} w_{ijkt} \ \widehat{Y}_{ijkt}\\ \end{aligned} \end{equation}\] where \(i\) serves as an index for the tariff class. GLMs fulfill the balance property when we use the canonical link (see (Wüthrich 2020)). For LMMs and hence, the hierarchical credibility model this property also holds. Conversely, most GLMMs do not have this property. To regain the balance property, we introduce a quantity \(\alpha\) \[\begin{equation} \begin{aligned} \alpha &= \frac{\sum_{i, j, k, t} w_{ijkt} \ Y_{ijkt}}{\sum_{i, j, k, t} w_{ijkt} \ \widehat{Y}_{ijkt}}\\ \end{aligned} \end{equation}\] which quantifies the deviation of the total predicted damage from the total observed damage. In case of the log link, we can then use \(\alpha\) to update the intercept to \(\hat{\mu} + \log(\alpha)\) to regain the balance property.
By default, the intercept is updated when fitting models using
hierCredGLM
, hierCredTweedie
and
tweedieGLMM
. If you do not wish to update the intercept,
you can set the argument balanceProperty = FALSE
.
= hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, balanceProperty = F)
fitnoBP = fitted(fitnoBP)
yHatnoBP = weights(fitnoBP, "prior")
w = fitnoBP$y
y
= hierCredGLM(Y ~ area + (1 | VehicleType / VehicleBody), dataCar, weights = w, balanceProperty = T)
fitBP = fitted(fitBP)
yHatBP
sum(w * y) / sum(w * yHatnoBP)
#> [1] 1.001388
sum(w * y) / sum(w * yHatBP)
#> [1] 1
Alternatively, you can use the build-in function
BalanceProperty
. You can use this function with any object
that has the slots fitted
, weights
and
y
.
BalanceProperty(fitnoBP)
#> Warning in BalanceProperty(fitnoBP):
#> Balance property is not satisfied.
#>
#> Ratio total observed damage to total predicted damage: 1.001388
BalanceProperty(fitBP)
#>
#> Balance property is satisfied.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.