The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Transaction studies

This article walks through an example of creating a transaction study using the actxps package. Unlike a termination study, transaction studies track events that can occur multiple times over the life of a policy. Often, transactions are expected to reoccur; for example, the utilization of a guaranteed income stream.

Key questions to answer in a transaction study are:

The example below walks through preparing data by adding transaction information to a data frame with exposure-level records using the add_transactions() function. Next, study results are summarized using the trx_stats() function.

Simulated transaction and account value data

In this example, we’ll be using the census_dat, withdrawals, and account_vals data sets. Each data set is based on a theoretical block of deferred annuity business with a guaranteed lifetime income benefit.

The add_transactions() function

The add_transactions() function attaches transactions to a data frame with exposure-level records. This data frame must have the class exposed_df. For our example, we first need to convert census_dat into exposure records using the expose() function.1 This example will use policy year exposures.

library(actxps)
library(dplyr)

exposed_data <- expose_py(census_dat, "2019-12-31", target_status = "Surrender")
exposed_data
#> Exposure data
#> 
#>  Exposure type: policy_year 
#>  Target status: Surrender 
#>  Study range: 1900-01-01 to 2019-12-31
#> 
#> # A tibble: 141,252 × 15
#>    pol_num status issue_date inc_guar qual    age product gender wd_age premium
#>      <int> <fct>  <date>     <lgl>    <lgl> <int> <fct>   <fct>   <int>   <dbl>
#>  1       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  2       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  3       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  4       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  5       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  6       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  7       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#>  8       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#>  9       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#> 10       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#> # ℹ 141,242 more rows
#> # ℹ 5 more variables: term_date <date>, pol_yr <int>, pol_date_yr <date>,
#> #   pol_date_yr_end <date>, exposure <dbl>

The withdrawals data has 4 columns that are required for attaching transactions:

withdrawals
#> # A tibble: 160,130 × 4
#>    pol_num trx_date   trx_type trx_amt
#>      <int> <date>     <fct>      <dbl>
#>  1       2 2007-10-05 Base          25
#>  2       2 2009-07-30 Base          12
#>  3       2 2010-02-22 Base           7
#>  4       2 2010-12-30 Base          52
#>  5       2 2012-05-07 Base          41
#>  6       2 2013-03-15 Base           1
#>  7       2 2013-12-06 Base           2
#>  8       2 2015-05-18 Base           2
#>  9       2 2016-05-10 Base           8
#> 10       2 2017-01-08 Base           2
#> # ℹ 160,120 more rows

The grain of this data is one row per policy per transaction. The expectation is that the number of records in the transaction data will not match the number of rows in the exposure data. That is because policies could have zero or several transactions in a given exposure period.

The add_transactions() function uses a non-equivalent join to associate each transaction with a policy number and a date interval found in the exposure data. Then, transaction counts and amounts are summarized such that there is one row per exposure period. In the event there are multiple transaction types found in the data, separate columns are created for each transaction type.

Using our example, we pass both the exposure and withdrawals data to add_transactions(). The resulting data has the same number of rows as original exposure data and 4 new columns:

exposed_trx <- add_transactions(exposed_data, withdrawals)
glimpse(exposed_trx)
#> Rows: 141,252
#> Columns: 19
#> $ pol_num         <int> 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, …
#> $ status          <fct> Active, Active, Active, Active, Active, Active, Active…
#> $ issue_date      <date> 2014-12-17, 2014-12-17, 2014-12-17, 2014-12-17, 2014-…
#> $ inc_guar        <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALS…
#> $ qual            <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE…
#> $ age             <int> 56, 56, 56, 56, 56, 56, 71, 71, 71, 71, 71, 71, 71, 71…
#> $ product         <fct> b, b, b, b, b, b, a, a, a, a, a, a, a, a, a, a, a, a, …
#> $ gender          <fct> F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, F, …
#> $ wd_age          <int> 77, 77, 77, 77, 77, 77, 71, 71, 71, 71, 71, 71, 71, 71…
#> $ premium         <dbl> 370, 370, 370, 370, 370, 370, 708, 708, 708, 708, 708,…
#> $ term_date       <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N…
#> $ pol_yr          <int> 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1…
#> $ pol_date_yr     <date> 2014-12-17, 2015-12-17, 2016-12-17, 2017-12-17, 2018-…
#> $ pol_date_yr_end <date> 2015-12-16, 2016-12-16, 2017-12-16, 2018-12-16, 2019-…
#> $ exposure        <dbl> 1.00000000, 1.00000000, 1.00000000, 1.00000000, 1.0000…
#> $ trx_amt_Base    <dbl> 0, 0, 0, 0, 0, 0, 25, 12, 7, 52, 41, 1, 2, 2, 8, 2, 44…
#> $ trx_amt_Rider   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
#> $ trx_n_Base      <dbl> 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
#> $ trx_n_Rider     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …

If we print exposed_trx, we can see that it is still an exposed_df object, but now it has an additional attribute for transaction types that have been attached.

exposed_trx
#> Exposure data
#> 
#>  Exposure type: policy_year 
#>  Target status: Surrender 
#>  Study range: 1900-01-01 to 2019-12-31
#>  Transaction types: Base, Rider 
#> 
#> 
#> # A tibble: 141,252 × 19
#>    pol_num status issue_date inc_guar qual    age product gender wd_age premium
#>      <int> <fct>  <date>     <lgl>    <lgl> <int> <fct>   <fct>   <int>   <dbl>
#>  1       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  2       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  3       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  4       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  5       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  6       1 Active 2014-12-17 TRUE     FALSE    56 b       F          77     370
#>  7       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#>  8       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#>  9       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#> 10       2 Active 2007-09-24 FALSE    FALSE    71 a       F          71     708
#> # ℹ 141,242 more rows
#> # ℹ 9 more variables: term_date <date>, pol_yr <int>, pol_date_yr <date>,
#> #   pol_date_yr_end <date>, exposure <dbl>, trx_amt_Base <dbl>,
#> #   trx_amt_Rider <dbl>, trx_n_Base <dbl>, trx_n_Rider <dbl>

The trx_stats() function

The actxps package’s workhorse function for summarizing transaction experience is trx_stats(). This function returns a trx_df object, which is a type of data frame containing additional attributes about the transaction study.

At a minimum, a trx_df includes the following for each transaction type (trx_type):

Optionally, a trx_df can also include:

To use trx_stats(), we simply need to pass it an exposed_df object with transactions attached.2

trx_stats(exposed_trx)
#> Transaction study results
#> 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 2 × 9
#>   trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq trx_util
#>   <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1 Base     60500    28224 1093899   124173    38.8    8.81     2.14    0.227
#> 2 Rider    77321    35941 2842729   124173    79.1   22.9      2.15    0.289

The results show us that we specified no groups, which is why the output data contains a single row for each transaction type.

Grouped data

If the data frame passed into trx_stats() is grouped using dplyr::group_by(), the resulting output will contain one record for each transaction type for each unique group.

In the following, exposed_trx is grouped by the presence of an income guarantee (inc_guar) before being passed to trx_stats(). This results in four rows because we have two types of transactions and two distinct values of inc_guar.

exposed_trx |> 
  group_by(inc_guar) |> 
  trx_stats()
#> Transaction study results
#> 
#>  Groups: inc_guar 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 4 × 10
#>   inc_guar trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq
#>   <lgl>    <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>
#> 1 FALSE    Base     52939    24703  952629    48938    38.6   19.5      2.14
#> 2 FALSE    Rider        0        0       0    48938   NaN      0      NaN   
#> 3 TRUE     Base      7561     3521  141270    75235    40.1    1.88     2.15
#> 4 TRUE     Rider    77321    35941 2842729    75235    79.1   37.8      2.15
#> # ℹ 1 more variable: trx_util <dbl>

Multiple grouping variables are allowed. Below, policy year (pol_yr) is added as a second grouping variable.

exposed_trx |> 
  group_by(pol_yr, inc_guar) |> 
  trx_stats()
#> Transaction study results
#> 
#>  Groups: pol_yr, inc_guar 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 60 × 11
#>    pol_yr inc_guar trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all
#>     <int> <lgl>    <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>
#>  1      1 FALSE    Base      6077     2881   98287     7435    34.1   13.2 
#>  2      1 FALSE    Rider        0        0       0     7435   NaN      0   
#>  3      1 TRUE     Base      1370      633   21590    11106    34.1    1.94
#>  4      1 TRUE     Rider     8077     3778  265312    11106    70.2   23.9 
#>  5      2 FALSE    Base      6091     2863   98413     6813    34.4   14.4 
#>  6      2 FALSE    Rider        0        0       0     6813   NaN      0   
#>  7      2 TRUE     Base      1183      559   18554    10158    33.2    1.83
#>  8      2 TRUE     Rider     8232     3834  288114    10158    75.1   28.4 
#>  9      3 FALSE    Base      6016     2813   97285     6176    34.6   15.8 
#> 10      3 FALSE    Rider        0        0       0     6176   NaN      0   
#> # ℹ 50 more rows
#> # ℹ 2 more variables: trx_freq <dbl>, trx_util <dbl>

Expressing transactions as a percentage of another value

In a transaction study, we often want to express transaction amounts as a percentage of another value. For example, in a withdrawal study, withdrawal amounts divided by account values provides a withdrawal rate. In a study of benefit utilization, transactions can be divided by a maximum benefit amount to derive a benefit utilization rate. In addition, actual-to-expected rates can be calculated by dividing transactions by expected values.

If column names are passed to the percent_of argument of trx_stats(), the output will contain 4 additional columns for each “percent of” variable:

For our example, let’s assume we’re interested in examining withdrawal transactions as a percentage of account values, which are available in the account_vals data frame in the column av_anniv.

# attach account values data
exposed_trx_w_av <- exposed_trx |> 
  left_join(account_vals, by = c("pol_num", "pol_date_yr"))

trx_res <- exposed_trx_w_av |> 
  group_by(pol_yr, inc_guar) |> 
  trx_stats(percent_of = "av_anniv")

glimpse(trx_res)
#> Rows: 60
#> Columns: 15
#> $ pol_yr                <int> 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, …
#> $ inc_guar              <lgl> FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TR…
#> $ trx_type              <chr> "Base", "Rider", "Base", "Rider", "Base", "Rider…
#> $ trx_n                 <dbl> 6077, 0, 1370, 8077, 6091, 0, 1183, 8232, 6016, …
#> $ trx_flag              <int> 2881, 0, 633, 3778, 2863, 0, 559, 3834, 2813, 0,…
#> $ trx_amt               <dbl> 98287, 0, 21590, 265312, 98413, 0, 18554, 288114…
#> $ exposure              <dbl> 7435, 7435, 11106, 11106, 6813, 6813, 10158, 101…
#> $ avg_trx               <dbl> 34.11558, NaN, 34.10742, 70.22552, 34.37408, NaN…
#> $ avg_all               <dbl> 13.219502, 0.000000, 1.943994, 23.889069, 14.444…
#> $ trx_freq              <dbl> 2.109337, NaN, 2.164297, 2.137904, 2.127489, NaN…
#> $ trx_util              <dbl> 0.38749159, 0.00000000, 0.05699622, 0.34017648, …
#> $ av_anniv_w_trx        <dbl> 3875306, 0, 865046, 4982082, 3909786, 0, 797932,…
#> $ av_anniv              <dbl> 9686914, 9686914, 14679001, 14679001, 9218561, 9…
#> $ pct_of_av_anniv_w_trx <dbl> 0.02536238, NaN, 0.02495821, 0.05325324, 0.02517…
#> $ pct_of_av_anniv_all   <dbl> 0.010146369, 0.000000000, 0.001470809, 0.0180742…

Confidence intervals

If conf_int is set to TRUE, trx_stats() will produce lower and upper confidence interval limits for the observed utilization rate. Confidence intervals are constructed assuming a binomial distribution.

exposed_trx |> 
  group_by(pol_yr) |> 
  trx_stats(conf_int = TRUE) |> 
  select(pol_yr, trx_util, trx_util_lower, trx_util_upper)
#> Transaction study results
#> 
#>  Groups: pol_yr 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 30 × 4
#>    pol_yr trx_util trx_util_lower trx_util_upper
#>     <int>    <dbl>          <dbl>          <dbl>
#>  1      1    0.190          0.184          0.195
#>  2      1    0.204          0.198          0.210
#>  3      2    0.202          0.196          0.208
#>  4      2    0.226          0.220          0.232
#>  5      3    0.215          0.208          0.221
#>  6      3    0.248          0.241          0.255
#>  7      4    0.223          0.216          0.230
#>  8      4    0.269          0.262          0.277
#>  9      5    0.233          0.225          0.240
#> 10      5    0.288          0.280          0.296
#> # ℹ 20 more rows

The default confidence level is 95%. This can be changed using the conf_level argument. Below, tighter confidence intervals are constructed by decreasing the confidence level to 90%.

exposed_trx |> 
  group_by(pol_yr) |> 
  trx_stats(conf_int = TRUE, conf_level = 0.9) |> 
  select(pol_yr, trx_util, trx_util_lower, trx_util_upper)
#> Transaction study results
#> 
#>  Groups: pol_yr 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 30 × 4
#>    pol_yr trx_util trx_util_lower trx_util_upper
#>     <int>    <dbl>          <dbl>          <dbl>
#>  1      1    0.190          0.185          0.194
#>  2      1    0.204          0.199          0.209
#>  3      2    0.202          0.197          0.207
#>  4      2    0.226          0.221          0.231
#>  5      3    0.215          0.209          0.220
#>  6      3    0.248          0.242          0.254
#>  7      4    0.223          0.218          0.229
#>  8      4    0.269          0.263          0.276
#>  9      5    0.233          0.226          0.239
#> 10      5    0.288          0.281          0.295
#> # ℹ 20 more rows

If any column names are passed to percent_of, trx_stats() will produce additional confidence intervals:

\[ Var(S) = E(N) \times Var(X) + E(X)^2 \times Var(N), \] Where S is the aggregate transactions random variable, X is an individual transaction amount assumed to follow a normal distribution, and N is a binomial random variable for transaction utilization.

exposed_trx_w_av |> 
  group_by(pol_yr) |> 
  trx_stats(conf_int = TRUE, percent_of = "av_anniv") |> 
  select(pol_yr, starts_with("pct_of")) |> 
  glimpse()
#> Rows: 30
#> Columns: 7
#> $ pol_yr                      <int> 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, …
#> $ pct_of_av_anniv_w_trx       <dbl> 0.02528863, 0.05325324, 0.02484580, 0.0573…
#> $ pct_of_av_anniv_all         <dbl> 0.004919864, 0.010888653, 0.005082440, 0.0…
#> $ pct_of_av_anniv_w_trx_lower <dbl> 0.02401960, 0.05078956, 0.02362583, 0.0544…
#> $ pct_of_av_anniv_w_trx_upper <dbl> 0.02655765, 0.05571692, 0.02606577, 0.0602…
#> $ pct_of_av_anniv_all_lower   <dbl> 0.004632812, 0.010297256, 0.004790158, 0.0…
#> $ pct_of_av_anniv_all_upper   <dbl> 0.005206917, 0.011480050, 0.005374723, 0.0…

autoplot() and autotable()

The autoplot() and autotable() functions create visualizations and summary tables from trx_df objects. See vignette("visualizations") for full details on these functions.

library(ggplot2)

trx_res |>
  # remove periods with zero transactions
  filter(trx_n > 0) |> 
  autoplot(y = pct_of_av_anniv_w_trx)

trx_res |> 
  # remove periods with zero transactions
  filter(trx_n > 0) |> 
  # first 10 rows showed for brevity
  head(10) |> 
  autotable()

Miscellaneous

Selecting and combining transaction types

The trx_types argument of trx_stats() selects a subset of transaction types that will appear in the output.

trx_stats(exposed_trx, trx_types = "Base")
#> Transaction study results
#> 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base 
#> # A tibble: 1 × 9
#>   trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq trx_util
#>   <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1 Base     60500    28224 1093899   124173    38.8    8.81     2.14    0.227

If the combine_trx argument is set to TRUE, all transaction types will be combined in a group called “All” in the output.

trx_stats(exposed_trx, combine_trx = TRUE)
#> Transaction study results
#> 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 1 × 9
#>   trx_type  trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq trx_util
#>   <chr>     <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1 All      137821    64165 3936628   124173    61.4    31.7     2.15    0.517

Partial exposures are removed as a default

As a default, trx_stats() removes partial exposures before summarizing results. This is done to avoid complexity associated with a lopsided skew in the timing of transactions. For example, if transactions can occur on a monthly basis or annually at the beginning of each policy year, partial exposures may not be appropriate. If a policy had an exposure of 0.5 years and was taking withdrawals annually at the beginning of the year, an argument could be made that the exposure should instead be 1 complete year. If the same policy was expected to take withdrawals 9 months into the year, it’s not clear if the exposure should be 0.5 years or 0.5 / 0.75 years. To override this treatment, set the full_exposures_only argument to FALSE.

trx_stats(exposed_trx, full_exposures_only = FALSE)
#> Transaction study results
#> 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#> # A tibble: 2 × 9
#>   trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq trx_util
#>   <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1 Base     69430    32379 1271778  132634.    39.3    9.59     2.14    0.244
#> 2 Rider    90700    42139 3361541  132634.    79.8   25.3      2.15    0.318

Summary method

As noted above, the result of trx_stats() is a trx_df object. If the summary() function is applied to a trx_df object, the data will be summarized again and return a higher level trx_df object.

If no additional arguments are passed, summary() returns a single row of aggregate results for each transaction type.

summary(trx_res)
#> Transaction study results
#> 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#>  Transactions as % of: av_anniv 
#> # A tibble: 2 × 13
#>   trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq trx_util
#>   <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>    <dbl>
#> 1 Base     60500    28224 1093899   124173    38.8    8.81     2.14    0.227
#> 2 Rider    77321    35941 2842729   124173    79.1   22.9      2.15    0.289
#> # ℹ 4 more variables: av_anniv_w_trx <dbl>, av_anniv <dbl>,
#> #   pct_of_av_anniv_w_trx <dbl>, pct_of_av_anniv_all <dbl>

If additional variable names are passed to the summary() function, then the output will group the data by those variables. In our example, if pol_yr is passed to summary(), the output will contain one row per policy year for each transaction type.

summary(trx_res, pol_yr)
#> Transaction study results
#> 
#>  Groups: pol_yr 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#>  Transactions as % of: av_anniv 
#> # A tibble: 30 × 14
#>    pol_yr trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq
#>     <int> <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>
#>  1      1 Base      7447     3514  119877    18541    34.1    6.47     2.12
#>  2      1 Rider     8077     3778  265312    18541    70.2   14.3      2.14
#>  3      2 Base      7274     3422  116967    16971    34.2    6.89     2.13
#>  4      2 Rider     8232     3834  288114    16971    75.1   17.0      2.15
#>  5      3 Base      7061     3309  116357    15397    35.2    7.56     2.13
#>  6      3 Rider     8204     3817  294795    15397    77.2   19.1      2.15
#>  7      4 Base      6596     3080  114987    13790    37.3    8.34     2.14
#>  8      4 Rider     7960     3715  283763    13790    76.4   20.6      2.14
#>  9      5 Base      6093     2847  109918    12234    38.6    8.98     2.14
#> 10      5 Rider     7536     3521  264939    12234    75.2   21.7      2.14
#> # ℹ 20 more rows
#> # ℹ 5 more variables: trx_util <dbl>, av_anniv_w_trx <dbl>, av_anniv <dbl>,
#> #   pct_of_av_anniv_w_trx <dbl>, pct_of_av_anniv_all <dbl>

Similarly, if inc_guar is passed to summary(), the output will contain a row for each transaction type and unique value in inc_guar.

summary(trx_res, inc_guar)
#> Transaction study results
#> 
#>  Groups: inc_guar 
#>  Study range: 1900-01-01 to 2019-12-31 
#>  Transaction types: Base, Rider 
#>  Transactions as % of: av_anniv 
#> # A tibble: 4 × 14
#>   inc_guar trx_type trx_n trx_flag trx_amt exposure avg_trx avg_all trx_freq
#>   <lgl>    <chr>    <dbl>    <int>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>
#> 1 FALSE    Base     52939    24703  952629    48938    38.6   19.5      2.14
#> 2 FALSE    Rider        0        0       0    48938   NaN      0      NaN   
#> 3 TRUE     Base      7561     3521  141270    75235    40.1    1.88     2.15
#> 4 TRUE     Rider    77321    35941 2842729    75235    79.1   37.8      2.15
#> # ℹ 5 more variables: trx_util <dbl>, av_anniv_w_trx <dbl>, av_anniv <dbl>,
#> #   pct_of_av_anniv_w_trx <dbl>, pct_of_av_anniv_all <dbl>

Column names

As a default, add_transactions() assumes the transaction data frame (trx_data) uses the following naming conventions:

These default names can be overridden using the col_pol_num, col_trx_date, col_trx_type, and col_trx_amt arguments.

For example, if the transaction type column was called transaction_code in our data, we could write:

exposed_data |> 
  add_transactions(withdrawals, col_trx_type = "transaction_code")

Similarly, trx_stats() assumes the input data uses the name exposure for exposures. This default can be overridden using the argument col_exposure.

Limitations

The trx_stats() function does not produce any calculations related to the persistence of transactions from exposure period to exposure period.


  1. See vignette('exposures') for more information on creating exposed_df objects.↩︎

  2. Unlike exp_stats(), trx_stats() requires data to be an exposed_df object.↩︎

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.