The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette explains some of the more advanced options of
{admiral}
related to higher order functions. A higher order
function is a function that takes another function as input. By
introducing these higher order functions, we intend to give the user
greater power over our derivation functions, whilst trying to negate the
need for adding additional {admiral}
functions or
arguments, or the user needing many separate steps.
The functions covered here are:
call_derivation()
: Call a single derivation multiple
times with some arguments being fixed across iterations and others
varyingrestrict_derivation()
: Execute a single derivation on a
subset of the input datasetslice_derivation()
: The input dataset is split into
slices (subsets) and for each slice a single derivation is called
separately. Some or all arguments of the derivation may vary depending
on the slice.The examples of this vignette require the following packages.
For example purpose, the ADSL dataset—which is included in
{admiral}
—and the SDTM datasets from
{pharmaversesdtm}
are used.
library(admiral)
library(pharmaversesdtm)
library(dplyr, warn.conflicts = FALSE)
data("admiral_adsl")
data("ae")
data("vs")
adsl <- admiral_adsl
ae <- convert_blanks_to_na(ae)
vs <- convert_blanks_to_na(vs)
The following code creates a minimally viable ADAE dataset to be used where needed in the following examples.
This function exists purely for convenience to save the user repeating numerous similar derivation function calls. It is best used when multiple derived variables have very similar specifications with only slight variations.
As an example, imagine the case where all the parameters in a BDS ADaM required both a highest value flag and a lowest value flag.
Here is an example of how to achieve this without
using call_derivation()
:
vs_without <- vs %>%
derive_var_extreme_flag(
by_vars = exprs(USUBJID, VSTESTCD),
order = exprs(VSORRES, VSSEQ),
new_var = AHIFL,
mode = "last"
) %>%
derive_var_extreme_flag(
by_vars = exprs(USUBJID, VSTESTCD),
order = exprs(VSORRES, VSSEQ),
new_var = ALOFL,
mode = "first"
)
USUBJID | VSTESTCD | VSORRES | ALOFL | AHIFL |
---|---|---|---|---|
01-701-1015 | TEMP | 96.9 | NA | NA |
01-701-1015 | TEMP | 97.0 | NA | NA |
01-701-1015 | TEMP | 97.2 | NA | NA |
01-701-1015 | TEMP | 96.6 | Y | NA |
01-701-1015 | TEMP | 97.7 | NA | NA |
01-701-1015 | TEMP | 97.0 | NA | NA |
01-701-1015 | TEMP | 97.5 | NA | NA |
01-701-1015 | TEMP | 97.4 | NA | NA |
01-701-1015 | TEMP | 98.0 | NA | Y |
01-701-1015 | TEMP | 97.4 | NA | NA |
Here is an example of how to achieve the same with
using call_derivation()
, where any different arguments are
passed using params()
:
vs_with <- vs %>%
call_derivation(
derivation = derive_var_extreme_flag,
variable_params = list(
params(new_var = AHIFL, mode = "last"),
params(new_var = ALOFL, mode = "first")
),
by_vars = exprs(USUBJID, VSTESTCD),
order = exprs(VSORRES, VSSEQ)
)
USUBJID | VSTESTCD | VSORRES | ALOFL | AHIFL |
---|---|---|---|---|
01-701-1015 | TEMP | 96.9 | NA | NA |
01-701-1015 | TEMP | 97.0 | NA | NA |
01-701-1015 | TEMP | 97.2 | NA | NA |
01-701-1015 | TEMP | 96.6 | Y | NA |
01-701-1015 | TEMP | 97.7 | NA | NA |
01-701-1015 | TEMP | 97.0 | NA | NA |
01-701-1015 | TEMP | 97.5 | NA | NA |
01-701-1015 | TEMP | 97.4 | NA | NA |
01-701-1015 | TEMP | 98.0 | NA | Y |
01-701-1015 | TEMP | 97.4 | NA | NA |
In the example, you can see how in these higher order functions,
derivation
is where the user supplies the name of the
derivation function to apply, with no trailing parentheses required.
Then variable_params
is used to pass a list of the
different arguments needed for each derived variable.
The advantage of this higher order function would be further
highlighted with examples where more than two variable derivations had
similar needs, such as the below case where multiple time to AE
parameters are derived in one call. Note that this example relies on
pre-defined tte_source
objects, as explained at Creating a BDS Time-to-Event ADaM.
adaette <- call_derivation(
derivation = derive_param_tte,
variable_params = list(
params(
event_conditions = list(ae_event),
set_values_to = exprs(PARAMCD = "TTAE")
),
params(
event_conditions = list(ae_ser_event),
set_values_to = exprs(PARAMCD = "TTSERAE")
),
params(
event_conditions = list(ae_sev_event),
set_values_to = exprs(PARAMCD = "TTSEVAE")
),
params(
event_conditions = list(ae_wd_event),
set_values_to = exprs(PARAMCD = "TTWDAE")
)
),
dataset_adsl = adsl,
source_datasets = list(adsl = adsl, adae = adae),
censor_conditions = list(lastalive_censor)
)
USUBJID | PARAMCD | STARTDT | ADT | CNSR | EVNTDESC | SRCDOM | SRCVAR |
---|---|---|---|---|---|---|---|
01-701-1111 | TTAE | 2012-09-07 | 2012-09-07 | 0 | ADVERSE EVENT | ADAE | ASTDT |
01-701-1111 | TTSERAE | 2012-09-07 | 2012-09-17 | 1 | ALIVE | ADSL | LSTALVDT |
01-701-1111 | TTSEVAE | 2012-09-07 | 2012-09-17 | 1 | ALIVE | ADSL | LSTALVDT |
01-701-1111 | TTWDAE | 2012-09-07 | 2012-09-17 | 1 | ALIVE | ADSL | LSTALVDT |
01-705-1393 | TTAE | 2012-09-07 | 2012-09-19 | 0 | ADVERSE EVENT | ADAE | ASTDT |
01-705-1393 | TTSERAE | 2012-09-07 | 2013-02-20 | 1 | ALIVE | ADSL | LSTALVDT |
01-705-1393 | TTSEVAE | 2012-09-07 | 2013-01-21 | 0 | SEVERE ADVERSE EVENT | ADAE | ASTDT |
01-705-1393 | TTWDAE | 2012-09-07 | 2013-02-20 | 1 | ALIVE | ADSL | LSTALVDT |
Developing your ADaM scripts this way using
call_derivation()
could give the following benefits:
The idea behind this function is that sometimes you want to apply a
derivation only for certain records from the input dataset. Introducing
restrict_derivation()
therefore gives the users the ability
to achieve this across any function, without each function needing to
have such an argument to allow for this.
An example would be if you wanted to flag the first occurring AE with the highest severity for each patient, but you only wanted to do this for records occurring on or after study day 1.
Here is how you could achieve this using
restrict_derivation()
, where the function arguments are
passed using params()
and the restriction criteria is given
using filter
:
ae <- ae %>%
mutate(TEMP_AESEVN = as.integer(factor(AESEV, levels = c("SEVERE", "MODERATE", "MILD")))) %>%
restrict_derivation(
derivation = derive_var_extreme_flag,
args = params(
new_var = AHSEVFL,
by_vars = exprs(USUBJID),
order = exprs(TEMP_AESEVN, AESTDY, AESEQ),
mode = "first"
),
filter = AESTDY >= 1
)
USUBJID | AEDECOD | AESTDY | AESEQ | AESEV | AHSEVFL |
---|---|---|---|---|---|
01-701-1111 | LOCALISED INFECTION | -61 | 3 | MODERATE | NA |
01-701-1111 | ERYTHEMA | -5 | 1 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 2 | MILD | NA |
01-701-1111 | ERYTHEMA | -5 | 4 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 5 | MILD | NA |
01-701-1111 | MICTURITION URGENCY | 1 | 6 | MILD | NA |
01-701-1111 | ARTHRALGIA | 7 | 7 | MODERATE | Y |
01-701-1111 | CELLULITIS | 7 | 8 | MODERATE | NA |
01-705-1393 | PRURITUS | -277 | 2 | MILD | NA |
01-705-1393 | PRURITUS | -277 | 4 | MILD | NA |
This function in a way combines the features of the above two. It
allows a single derivation to be applied with different arguments for
different slices (subsets) of records from the input dataset. You could
do this with separate restrict_derivation()
calls for each
different set of records, but slice_derivation()
allows to
achieve this in one call.
An example would be if you wanted to achieve the same derivation as above for records occurring on or after study day 1, but for pre-treatment AEs you wanted to flag only the last occurring AE.
Here is how you could achieve this using
slice_derivation()
, where the function arguments are passed
using params()
and via the different slices controlled by
filter
:
ae <- ae %>%
slice_derivation(
derivation = derive_var_extreme_flag,
args = params(
new_var = AHSEV2FL,
by_vars = exprs(USUBJID)
),
derivation_slice(
filter = AESTDY >= 1,
args = params(order = exprs(TEMP_AESEVN, AESTDY, AESEQ), mode = "first")
),
derivation_slice(
filter = TRUE,
args = params(order = exprs(AESTDY, AESEQ), mode = "last")
)
)
USUBJID | AEDECOD | AESTDY | AESEQ | AESEV | AHSEV2FL |
---|---|---|---|---|---|
01-701-1111 | LOCALISED INFECTION | -61 | 3 | MODERATE | NA |
01-701-1111 | ERYTHEMA | -5 | 1 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 2 | MILD | NA |
01-701-1111 | ERYTHEMA | -5 | 4 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 5 | MILD | Y |
01-701-1111 | MICTURITION URGENCY | 1 | 6 | MILD | NA |
01-701-1111 | ARTHRALGIA | 7 | 7 | MODERATE | Y |
01-701-1111 | CELLULITIS | 7 | 8 | MODERATE | NA |
01-705-1393 | PRURITUS | -277 | 2 | MILD | NA |
01-705-1393 | PRURITUS | -277 | 4 | MILD | Y |
As you can see in the example, the derivation_slice
ordering is important. Here we addressed all the AEs on or after study
day 1 first, and then we used filter = TRUE
option to catch
all remaining records (in this case pre-treatment AEs).
The ordering is perhaps shown even more when we look at the below example where three slices are taken. Remember that observations that match with more than one slice are only considered for the first matching slice. So in this case we’re creating a flag for each patient for the record with the first severe AE, and then the first moderate AE, and finally flagging the last occurring AE where not severe or moderate.
ae <- ae %>%
slice_derivation(
derivation = derive_var_extreme_flag,
args = params(
new_var = AHSEV3FL,
by_vars = exprs(USUBJID)
),
derivation_slice(
filter = AESEV == "SEVERE",
args = params(order = exprs(AESTDY, AESEQ), mode = "first")
),
derivation_slice(
filter = AESEV == "MODERATE",
args = params(order = exprs(AESTDY, AESEQ), mode = "first")
),
derivation_slice(
filter = TRUE,
args = params(order = exprs(AESTDY, AESEQ), mode = "last")
)
)
USUBJID | AEDECOD | AESTDY | AESEQ | AESEV | AHSEV3FL |
---|---|---|---|---|---|
01-701-1111 | LOCALISED INFECTION | -61 | 3 | MODERATE | Y |
01-701-1111 | ERYTHEMA | -5 | 1 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 2 | MILD | NA |
01-701-1111 | ERYTHEMA | -5 | 4 | MILD | NA |
01-701-1111 | PRURITUS | -5 | 5 | MILD | NA |
01-701-1111 | MICTURITION URGENCY | 1 | 6 | MILD | Y |
01-701-1111 | ARTHRALGIA | 7 | 7 | MODERATE | NA |
01-701-1111 | CELLULITIS | 7 | 8 | MODERATE | NA |
01-705-1393 | PRURITUS | -277 | 2 | MILD | NA |
01-705-1393 | PRURITUS | -277 | 4 | MILD | NA |
The order is only important when the slices are not mutually exclusive, so in the above case the moderate AE slice could have been above the severe AE slice, for example, and there would have been no difference to the result. However the third slice had to come last to check all remaining (i.e. not severe or moderate) records only.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.