The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Replication Codes for Experimental Evaluation of Algorithm-Assisted Human Decision-Making: Application to Pretrial Public Safety Assessment

Sooahn Shin

library(aihuman)

Imai, Kosuke, Zhichao Jiang, D. James Greiner, Ryan Halen, and Sooahn Shin. “Experimental Evaluation of Algorithm-Assisted Human Decision-Making: Application to Pretrial Public Safety Assessment.” (with discussion) Journal of the Royal Statistical Society, Series A (Statistics in Society), 2023.

The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Overview

The main functions in this package are as follows:

Category Function Type Main Input Output Paper Notes
descriptive PlotStackedBar() vis. e.g., data(psa_synth) ggplot Fig 1 dist. of \(D_i\)
descriptive CalDIMsubgroup() est. e.g., data(synth) dataframe Sec 2.4 diff-in-means
descriptive PlotDIMdecisions() vis. output of CalDIMsubgroup() ggplot Fig 2 (left)
descriptive PlotDIMoutcomes() vis. output of CalDIMsubgroup() for each outcome ggplot Fig 2 (right)
main AiEvalmcmc() est.(c/h) e.g., data(synth) mcmc Sec S5
main CalAPCE() est.(c/h) output of AiEvalmcmc() list Sec 3.4
main APCEsummary() est. output of CalAPCE() dataframe Sec 3.4 APCE
main PlotAPCE() vis. output of APCEsummary() ggplot Fig 4
strata CalPS() est. $P.R.mcmc of CalAPCE() dataframe Eq 6 \(e_r\)
strata PlotPS() vis. output of CalPS() ggplot Fig 3
fairness CalFairness() est. output of CalAPCE() dataframe Sec 3.6 \(\Delta_r(z)\)
fairness PlotFairness() est. output of CalFairness() ggplot Fig 5
optimal CalOptimalDecision() est. output of AiEvalmcmc() dataframe Sec 3.7 \(\delta^\ast(\mathbf{x})\)
optimal PlotOptimalDecision() vis. output of CalOptimalDecision() ggplot Fig 6
comparison PlotUtilityDiff() vis. output of CalOptimalDecision() ggplot Fig 7 \(g_d(\mathbf{x})\)
comparison PlotUtilityDiffCI() vis. output of CalOptimalDecision() ggplot Fig S17
crt SpilloverCRT() est. court event hearing date, \(D_i\), \(Z_i\) daraframe Sec S3.1
crt PlotSpilloverCRT() vis. output of SpilloverCRT() ggplot Fig S8
crt power SpilloverCRTpower() est. court event hearing date, \(D_i\), \(Z_i\) dataframe Sec S3.2
crt power PlotSpilloverCRTpower() vis. output of SpilloverCRTpower() ggplot Fig S9
frequentist CalAPCEipw() est. e.g., data(synth) dataframe Sec S7
frequentist BootstrapAPCEipw() est. e.g., data(synth) dataframe
frequentist APCEsummaryipw() est. outputs of CalAPCEipw() and BootstrapAPCEipw() dataframe
frequentist (RE) CalAPCEipwRE() est. e.g., data(synth) dataframe
frequentist (RE) BootstrapAPCEipwRE() est. e.g., data(synth) dataframe

vis. = visualization; est. = estimation; c/h = computation-heavy. You may use CalAPCEparallel() instead of CalAPCE() throughout the analysis.

Synthetic data

In this document, we will use synthetic data for the analysis. We have three different versions of data, depending on whether it includes PSA variables (FTA score, NCA score, NVCA flag, and DMF recommendation) or court event hearing date.

Data 1: synth

This is the main data that will be used for estimating Average Principal Causal Effects (APCE). The data should be in form of data.frame, and must contain the following columns:

Note that the column names of treatment, decision, and outcome should be specified as “Z”, “D”, and “Y” respectively. In this example, we assume four ordinal decisions (i.e., \(D_i = 0, 1, 2, 3\)). See Section 3.4 of the paper for more details.

data("synth")
str(synth)
#> 'data.frame':    1000 obs. of  11 variables:
#>  $ Y                           : int  0 0 0 0 0 0 1 0 1 0 ...
#>  $ D                           : int  0 0 1 0 2 0 0 0 0 0 ...
#>  $ Z                           : int  0 1 0 0 0 0 0 0 0 1 ...
#>  $ Sex                         : int  0 1 1 1 1 1 1 1 1 1 ...
#>  $ White                       : int  0 1 1 0 1 0 0 0 1 1 ...
#>  $ Age                         : int  28 19 33 38 27 25 22 34 39 34 ...
#>  $ CurrentViolentOffense       : int  0 1 0 0 0 0 1 1 1 0 ...
#>  $ PendingChargeAtTimeOfOffense: int  0 0 0 0 1 0 1 0 1 1 ...
#>  $ PriorMisdemeanorConviction  : int  1 1 1 0 1 1 0 1 1 0 ...
#>  $ PriorFelonyConviction       : int  0 0 1 0 1 1 0 0 1 0 ...
#>  $ PriorViolentConviction      : int  3 0 0 0 0 1 0 2 0 0 ...
synth[1:6,]
#>   Y D Z Sex White Age CurrentViolentOffense PendingChargeAtTimeOfOffense
#> 1 0 0 0   0     0  28                     0                            0
#> 2 0 0 1   1     1  19                     1                            0
#> 3 0 1 0   1     1  33                     0                            0
#> 4 0 0 0   1     0  38                     0                            0
#> 5 0 2 0   1     1  27                     0                            1
#> 6 0 0 0   1     0  25                     0                            0
#>   PriorMisdemeanorConviction PriorFelonyConviction PriorViolentConviction
#> 1                          1                     0                      3
#> 2                          1                     0                      0
#> 3                          1                     1                      0
#> 4                          0                     0                      0
#> 5                          1                     1                      0
#> 6                          1                     1                      1
unique(synth$D)
#> [1] 0 1 2 3

Data 2: psa_synth

This is a data.frame that consists of synthetic Z, D, and four PSA variables (FTAScore, NCAScore, NVCAFlag, and DMF). This will be used for PlotStackedBar() function (e.g., Figure 1).

data("psa_synth")
str(psa_synth)
#> tibble [1,000 × 6] (S3: tbl_df/tbl/data.frame)
#>  $ Z       : int [1:1000] 0 1 0 0 0 0 0 0 0 1 ...
#>  $ D       : int [1:1000] 0 0 1 0 2 0 0 0 0 0 ...
#>  $ FTAScore: num [1:1000] 1 4 2 3 1 3 3 3 2 2 ...
#>  $ NCAScore: num [1:1000] 1 5 3 3 1 3 3 3 3 3 ...
#>  $ NVCAFlag: num [1:1000] 0 0 0 0 0 0 0 0 0 0 ...
#>  $ DMF     : num [1:1000] 0 1 1 0 0 0 0 0 0 0 ...
psa_synth[1:6,]
#> # A tibble: 6 × 6
#>       Z     D FTAScore NCAScore NVCAFlag   DMF
#>   <int> <int>    <dbl>    <dbl>    <dbl> <dbl>
#> 1     0     0        1        1        0     0
#> 2     1     0        4        5        0     1
#> 3     0     1        2        3        0     1
#> 4     0     0        3        3        0     0
#> 5     0     2        1        1        0     0
#> 6     0     0        3        3        0     0

Data 3: hearingdate_synth

This is a Date vector that includes synthetic court event hearing date for each cases. It will be used for testing the potential existence of spillover effects: SpilloverCRT(). See Appendix S3 for more details.

data("hearingdate_synth")
str(hearingdate_synth)
#>  Date[1:1000], format: "2000-06-01" "2000-06-02" "2000-06-02" "2000-06-02" "2000-06-02" ...
hearingdate_synth[1:6]
#> [1] "2000-06-01" "2000-06-02" "2000-06-02" "2000-06-02" "2000-06-02"
#> [6] "2000-06-02"

Interim data

In the original paper, we use three data.frame of which Y corresponds to each of three binary outcome variables – failure to appear (FTA), new criminal activity (NCA), and new violent criminal activity (NVCA).For example, FTAdata consists of following columns:

See the table below for the details of the pre-treatment covariates:

Variables Description
Sex male or female
White white or non-white
SexWhite the interaction between Sex and White
Age age
NCorNonViolentMisdemeanorCharge binary variable for current NC (parole violations) or non-violent misdemeanor charge
ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge
NonViolentFelonyCharge binary variable for current non-violent felony charge
ViolentFelonyCharge binary variable for current violent felony charge
PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction (\(0,1,2\) and \(3\), where \(3\) indicates the counts of three or more)
PriorSentenceToIncarceration binary variable for prior sentence to incarceration
PriorFTAInPastTwoYears three-level ordinal variable for FTAs from past two years (\(0,1\) and \(2\) where \(2\) indicates the counts of two or more)
PriorFTAOlderThanTwoYears binary variable for FTAs from over two years ago
Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

Additionally, PSAdata is a data.frame that consists of Z, D, and four PSA variables (FTAScore, NCAScore, NVCAFlag, and DMF). This will be used for PlotStackedBar() function (e.g., Figure 1).

Lastly, HearingDate is a factor vector for court event hearing date for each cases. It will be used for testing the potential existence of spillover effects: SpilloverCRT(). See Appendix S3 for more details.

The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Descriptive statistics

Before we get into the main analysis, we can visualize some descriptive statistics using the following functions:

Distribution of the judge’s decisions (Figure 1)

PlotStackedBar() plots the distribution of the judge’s decisions given the PSA. Similarly, PlotStackedBarDMF() plots the distribution of the judge’s decisions given the DMF recommendation. By using the subset of the data, you may also plot the distribution among particular cases (e.g., treatment group, female arrestees). See Figure 1 and Appendix S1 for example. Note that the function requires a data.frame of which columns includes an ordinal decision (D), and psa variables (fta, nca, and nvca) as in data(psa_synth).

# Call the data
data(psa_synth)
# Treated group (PSA provided)
p.treated = PlotStackedBar(psa_synth[psa_synth$Z == 1, ],
                           d.colors = c("grey80", "grey60", "grey30", "grey10"),
                           d.labels = c("signature","small","middle","large"),
                           legend.position = "bottom")
# Control group (PSA not provided)
p.control = PlotStackedBar(psa_synth[psa_synth$Z == 0, ],
                           d.colors = c("grey80", "grey60", "grey30", "grey10"),
                           d.labels = c("signature","small","middle","large"),
                           legend.position = "bottom")

p.dmf = PlotStackedBarDMF(psa_synth, 
                          d.colors = c("grey80", "grey60", "grey30", "grey10"),
                          d.labels = c("signature","small","middle","large"),
                          dmf.label = "DMF")

# For more details
# ?PlotStackedBar

# Example
p.treated$p.fta

You may plot the three figures (each for FTA, NCA, and NVCA) together using the codes below.

# To plot three figures together
library(ggplot2)
library(gridExtra)

mylegend <- g_legend(p.control$p.nvca)

# Treated
grid.arrange(arrangeGrob(p.control$p.fta + theme(legend.position="none"),
                         p.control$p.nca + theme(legend.position="none"),
                         p.control$p.nvca + theme(legend.position="none"),
                         p.dmf$p.treat + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))

# Control
grid.arrange(arrangeGrob(p.control$p.fta + theme(legend.position="none"),
                         p.control$p.nca + theme(legend.position="none"),
                         p.control$p.nvca + theme(legend.position="none"),
                         p.dmf$p.control + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))

Replication codes

See the codes that are used to plot Figure 1 and Figure S1-S3 below.

library(aihuman)
data(PSAdata)
library(tidyverse)
library(gridExtra)

# Figure 1
p.treated = PlotStackedBar(PSAdata %>% filter(Z==1), legend.position = "bottom")
p.control = PlotStackedBar(PSAdata %>% filter(Z==0), legend.position = "bottom")
p.dmf = PlotStackedBarDMF(PSAdata, dmf.category = c("signature bond", "cash bond"))
mylegend = g_legend(p.treated$p.nvca)
pdf("figs/stackedbar.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(p.treated$p.fta + theme(legend.position="none"),
                         p.treated$p.nca + theme(legend.position="none"),
                         p.treated$p.nvca + theme(legend.position="none"),
                         p.dmf$p.treat + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()
pdf("figs/stackedbar_control.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(p.control$p.fta + theme(legend.position="none"),
                         p.control$p.nca + theme(legend.position="none"),
                         p.control$p.nvca + theme(legend.position="none"),
                         p.dmf$p.control + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()

# Figure S1
S0.t = PlotStackedBar(PSAdata %>% filter(Z==1&Sex==0), legend.position = "bottom")
S0.c = PlotStackedBar(PSAdata %>% filter(Z==0&Sex==0), legend.position = "bottom")
S0.dmf = PlotStackedBarDMF(PSAdata %>% filter(Sex==0), 
                           dmf.category = c("signature bond", "cash bond"))
pdf("figs/stackedbar_F.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(S0.t$p.fta + theme(legend.position="none"),
                         S0.t$p.nca + theme(legend.position="none"),
                         S0.t$p.nvca + theme(legend.position="none"),
                         S0.dmf$p.treat + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()
pdf("figs/stackedbar_control_F.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(S0.c$p.fta + theme(legend.position="none"),
                         S0.c$p.nca + theme(legend.position="none"),
                         S0.c$p.nvca + theme(legend.position="none"),
                         S0.dmf$p.control + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()

# Figure S3
S1W1.t = PlotStackedBar(PSAdata %>% filter(Z==1&Sex==1&White==1), legend.position = "bottom")
S1W1.c = PlotStackedBar(PSAdata %>% filter(Z==0&Sex==1&White==1), legend.position = "bottom")
S1W1.dmf = PlotStackedBarDMF(PSAdata %>% filter(Sex==1&White==1), 
                             dmf.category = c("signature bond", "cash bond"))
pdf("figs/stackedbar_WM.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(S1W1.t$p.fta + theme(legend.position="none"),
                         S1W1.t$p.nca + theme(legend.position="none"),
                         S1W1.t$p.nvca + theme(legend.position="none"),
                         S1W1.dmf$p.treat + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()
pdf("figs/stackedbar_control_WM.pdf", height = 6, width = 22) 
grid.arrange(arrangeGrob(S1W1.c$p.fta + theme(legend.position="none"),
                         S1W1.c$p.nca + theme(legend.position="none"),
                         S1W1.c$p.nvca + theme(legend.position="none"),
                         S1W1.dmf$p.control + theme(legend.position="none"),
                         nrow=1),
             mylegend, nrow=2,heights=c(10, 1))
dev.off()

Intention to treat effects of PSA Provision (Figure 2)

PlotDIMdecisions() plots estimated average causal effects of PSA provision on the judge’s decisions and PlotDIMoutcomes() plots that on the outcome. The results are based on the difference-in-means estimator. Please check Figure 2 for example. To plot these, you may need to compute the estimates using CalDIMsubgroup() function first. This function requires the following main arguments:

See the example below:

# Call the data
data(synth)

# Subgroup index
subgroup_synth = list(1:nrow(synth),
                      which(synth$Sex==0),
                      which(synth$Sex==1),
                      which(synth$Sex==1&synth$White==0),
                      which(synth$Sex==1&synth$White==1))

# Compute Diff-in-Means on decision
res_dec = CalDIMsubgroup(synth, subgroup = subgroup_synth)
# Plot the results
PlotDIMdecisions(res_dec,
                 decision.labels = c("signature","small cash","middle cash","large cash"),
                 col.values = c("grey60", "grey30", "grey6", "grey1"), 
                 shape.values = c(16, 17, 15, 18))


# Synthetic data for outcome
synth_fta <- synth_nca <- synth_nvca <- synth
set.seed(123)
synth_fta$Y <- sample(0:1, 1000, replace = T)
synth_nca$Y <- sample(0:1, 1000, replace = T)
synth_nvca$Y <- sample(0:1, 1000, replace = T)
# Compute Diff-in-Means on outcome
res_fta = CalDIMsubgroup(synth_fta, subgroup = subgroup_synth)
res_nca = CalDIMsubgroup(synth_nca, subgroup = subgroup_synth)
res_nvca = CalDIMsubgroup(synth_nvca, subgroup = subgroup_synth)
# Plot the results
PlotDIMoutcomes(res_fta, res_nca, res_nvca, y.max = 0.3)

Replication codes

See the codes that are used to plot Figure 2 below.

# Figure 2
data(FTAdata)
data(NCAdata)
data(NVCAdata)

# Subgroup index
subgroup_data = list(1:nrow(FTAdata),
                      which(FTAdata$Sex==0),
                      which(FTAdata$Sex==1),
                      which(FTAdata$Sex==1&FTAdata$White==0),
                      which(FTAdata$Sex==1&FTAdata$White==1))
# Compute Diff-in-Means on decision
res_dec = CalDIMsubgroup(FTAdata, subgroup = subgroup_data)
# Plot the results
pdf("figs/itt_decisions.pdf", width = 9, height = 5)
PlotDIMdecisions(res_dec, y.max = 0.17)
dev.off()
# Compute Diff-in-Means on outcome
res_fta = CalDIMsubgroup(FTAdata, subgroup = subgroup_data)
res_nca = CalDIMsubgroup(NCAdata, subgroup = subgroup_data)
res_nvca = CalDIMsubgroup(NVCAdata, subgroup = subgroup_data)
# Plot the results
pdf("figs/itt_outcomes.pdf", width = 9, height = 5)
PlotDIMoutcomes(res_fta, res_nca, res_nvca,
                y.max = 0.17, top.margin = 0.02, bottom.margin = 0.02,
                label.position = c("top", "bottom", "top"))
dev.off()

For subgroup analysis for age groups in Figure S5:

# Figure S5
# Subgroup index
subgroup_age = list(which(FTAdata$Age<23),
                    which(FTAdata$Age>=23&FTAdata$Age<29),
                    which(FTAdata$Age>=29&FTAdata$Age<36),
                    which(FTAdata$Age>=36&FTAdata$Age<46),
                    which(FTAdata$Age>=46))
# Compute Diff-in-Means on decision
res_age = CalDIMsubgroup(FTAdata, subgroup = subgroup_age,
                         name.group = c("17~22", "23~28", "29~35", "36~45", "46~"))
# Plot the results
pdf("figs/itt_decisions_age.pdf", width = 9, height = 5)
PlotDIMdecisions(res_age)
dev.off()
# Compute Diff-in-Means on outcome
res_fta_age = CalDIMsubgroup(FTAdata, subgroup = subgroup_age,
                         name.group = c("17~22", "23~28", "29~35", "36~45", "46~"))
res_nca_age = CalDIMsubgroup(NCAdata, subgroup = subgroup_age,
                         name.group = c("17~22", "23~28", "29~35", "36~45", "46~"))
res_nvca_age = CalDIMsubgroup(NVCAdata, subgroup = subgroup_age,
                         name.group = c("17~22", "23~28", "29~35", "36~45", "46~"))
# Plot the results
pdf("figs/itt_outcomes_age.pdf", width = 9, height = 5)
PlotDIMoutcomes(res_fta_age, res_nca_age, res_nvca_age,
                name.group = c("17~22", "23~28", "29~35", "36~45", "46~"),
                top.margin = 0.02, bottom.margin = 0.02,
                label.position = c("top", "bottom", "top"))
dev.off()

Main analysis: Average Principal Causal Effects (APCE)

To estimate and visualize the APCE using the proposed method, the functions below are used in the following order:

  1. AiEvalmcmc(): Sample the parameters using Gibbs sampling. See Appendix S5 for more details.
  2. CalAPCE() or CalAPCEparallel(): Compute APCE for each posterior sample from mcmc.
  3. APCEsummary(): Summarize the results based on the average and 95% quantile of the estimated APCE(s) for each sample from mcmc.
  4. PlotAPCE(): Visualize the results as in Figure 4.

AiEvalmcmc()

AiEvalmcmc() samples the parameters using Gibbs sampler specified in Appendix S5. Basically, you need to specify the data and the number of mcmc iterations (n.mcmc).

Please check the documentation of the function using the code ?AiEvalmcmc for other arguments. The example code is as below:

data(synth)
sample_mcmc = AiEvalmcmc(data = synth, n.mcmc = 10) 
#> 10/10 done.
# increase n.mcmc in your analysis

CalAPCE() or CalAPCEparallel()

CalAPCE() computes APCE for each posterior sample in the output of AiEvalmcmc(). CalAPCEparallel() uses parallel computing to reduce its computation time. You may need three main inputs:

For CalAPCEparallel(), you also need to specify size (the number of parallel computing). I recommend you to check the number of CPU cores in your computer using parallel::detectCores() and divide it by 4 to determine the size. If the number of CPU cores is 4, use CalAPCE() without parallel computing.

Note that the output is in form of list. Please check the documentation of the function using the code ?CalAPCE or ?CalAPCEparallel for other arguments and the details of outputs. The example code is as below:

subgroup_synth = list(1:nrow(synth),
                      which(synth$Sex==0),
                      which(synth$Sex==1),
                      which(synth$Sex==1&synth$White==0),
                      which(synth$Sex==1&synth$White==1))
sample_apce = CalAPCE(data = synth,
                      mcmc.re = sample_mcmc,
                      subgroup = subgroup_synth)
# Or using parallel computing (results are the same):
# sample_apce = CalAPCEparallel(data = synth,
#                               mcmc.re = sample_mcmc,
#                               subgroup = subgroup_synth,
#                               burnin = 0,
#                               size = 2)

APCEsummary()

APCEsummary() computes the average and 95% quantile of APCE of each sample. You only need the output of CalAPCE() or CalAPCEparallel().

sample_apce_summary = APCEsummary(sample_apce[["APCE.mcmc"]])

PlotAPCE() (Figure 4)

PlotAPCE() visualizes the results as in Figure 4. See the example below:

PlotAPCE(sample_apce_summary, 
         y.max = 0.25, 
         decision.labels = c("signature","small cash","middle cash","large cash"),
         shape.values = c(16, 17, 15, 18), 
         col.values = c("blue", "black", "red", "brown", "purple"), 
         label = FALSE)

Replication codes

The codes below is used for the main analysis and the visualization of Figure 4:

## Main analysis
# MCMC
library(coda)
PSADiag_ordinal = function(data, rho=0,
                            ## mcmc parameters
                            n.mcmc = 5*10^4, verbose = TRUE, out.length = 500){
  set.seed(111)
  mcmc1 = AiEvalmcmc(data,rho=rho,n.mcmc=n.mcmc,verbose=TRUE,out.length=out.length)
  set.seed(222)
  mcmc2 = AiEvalmcmc(data,rho=rho,n.mcmc=n.mcmc,verbose=TRUE,out.length=out.length)
  set.seed(333)
  mcmc3 = AiEvalmcmc(data,rho=rho,n.mcmc=n.mcmc,verbose=TRUE,out.length=out.length)
  set.seed(444)
  mcmc4 = AiEvalmcmc(data,rho=rho,n.mcmc=n.mcmc,verbose=TRUE,out.length=out.length)
  set.seed(555)
  mcmc5 = AiEvalmcmc(data,rho=rho,n.mcmc=n.mcmc,verbose=TRUE,out.length=out.length)
  
  mcmc.PSA = mcmc.list(mcmc1,mcmc2,mcmc3,mcmc4, mcmc5)
  return(mcmc.PSA)
}

PSA.ordinal.diag.fta = PSADiag_ordinal(FTAdata,n.mcmc=50000,verbose=TRUE,out.length=500)
PSA.ordinal.diag.nca = PSADiag_ordinal(NCAdata,n.mcmc=50000,verbose=TRUE,out.length=500)
PSA.ordinal.diag.nvca = PSADiag_ordinal(NVCAdata,n.mcmc=50000,verbose=TRUE,out.length=500)

FTAmcmc <- lapply(PSA.ordinal.diag.fta, function(x) x[-(1: floor(0.5*dim(x)[1])),])
FTAmcmc <- do.call("rbind", FTAmcmc)
FTAmcmc <- mcmc(FTAmcmc)

NCAmcmc <- lapply(PSA.ordinal.diag.nca, function(x) x[-(1: floor(0.5*dim(x)[1])),])
NCAmcmc <- do.call("rbind", NCAmcmc)
NCAmcmc <- mcmc(NCAmcmc)

NVCAmcmc <- lapply(PSA.ordinal.diag.nvca, function(x) x[-(1: floor(0.5*dim(x)[1])),])
NVCAmcmc <- do.call("rbind", NVCAmcmc)
NVCAmcmc <- mcmc(NVCAmcmc)

# APCE
subg = list(1:nrow(FTAdata),
            which(FTAdata$Sex==0),
            which(FTAdata$Sex==1),
            which(FTAdata$Sex==1&FTAdata$White==0),
            which(FTAdata$Sex==1&FTAdata$White==1))

FTAace <- CalAPCEparallel(FTAdata,FTAmcmc,subgroup=subg,rho=0,burnin=0,size=5)
FTAqoi <- APCEsummary(FTAace[["APCE.mcmc"]])

NCAace <- CalAPCEparallel(NCAdata,NCAmcmc,subgroup=subg,rho=0,burnin=0,size=5)
NCAqoi <- APCEsummary(NCAace[["APCE.mcmc"]])

NVCAace <- CalAPCEparallel(NVCAdata,NVCAmcmc,subgroup=subg,rho=0,burnin=0,size=5)
NVCAqoi <- APCEsummary(NVCAace[["APCE.mcmc"]])

# Figure 4
pdf("figs/qoi_fta.pdf", width = 9, height = 3)
PlotAPCE(FTAqoi, y.max = 0.166, top.margin = 0.05, bottom.margin = 0.05, 
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)") +
  theme(legend.position = "none") 
dev.off()
pdf("figs/qoi_nca.pdf", width = 9, height = 3)
PlotAPCE(NCAqoi, y.max = 0.166, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)") +
  theme(legend.position = "none")
dev.off()
pdf("figs/qoi_nvca.pdf", width = 9, height = 3.5)
PlotAPCE(NVCAqoi, y.max = 0.166, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)")
dev.off()

For subgroup analysis for age groups in Figure S7:

# APCE
subg.age = list(which(FTAdata$Age<23),
            which(FTAdata$Age>=23&FTAdata$Age<29),
            which(FTAdata$Age>=29&FTAdata$Age<36),
            which(FTAdata$Age>=36&FTAdata$Age<46),
            which(FTAdata$Age>=46))
subg.age.lab = c("17~22", "23~28", "29~35", "36~45", "46~")
FTAace.age <- CalAPCEparallel(FTAdata,FTAmcmc,subgroup=subg.age,
                          name.group=subg.age.lab,
                          rho=0,burnin=0,size=5)
FTAqoi.age <- APCEsummary(FTAace.age[["APCE.mcmc"]])

NCAace.age <- CalAPCEparallel(NCAdata,NCAmcmc,subgroup=subg.age,
                          name.group=subg.age.lab,
                          rho=0,burnin=0,size=5)
NCAqoi.age <- APCEsummary(NCAace.age[["APCE.mcmc"]])

NVCAace.age <- CalAPCEparallel(NVCAdata,NVCAmcmc,subgroup=subg.age,
                          name.group=subg.age.lab,
                          rho=0,burnin=0,size=5)
NVCAqoi.age <- APCEsummary(NVCAace.age[["APCE.mcmc"]])

# Figure S7
pdf("figs/qoi_fta_age.pdf", width = 9, height = 3)
PlotAPCE(FTAqoi.age, y.max = 0.124, top.margin = 0.03, bottom.margin = 0.03, 
         label.position = c("top", "bottom", "top", "bottom"),
         name.group = subg.age.lab) + 
  labs(title = "Failure to Appear (FTA)") +
  theme(legend.position = "none") 
dev.off()
pdf("figs/qoi_nca_age.pdf", width = 9, height = 3)
PlotAPCE(NCAqoi.age, y.max = 0.124, label = FALSE, name.group = subg.age.lab) + 
  labs(title = "New Criminal Activity (NCA)") +
  theme(legend.position = "none")
dev.off()
pdf("figs/qoi_nvca_age.pdf", width = 9, height = 3.5)
PlotAPCE(NVCAqoi.age, y.max = 0.124, label = FALSE, name.group = subg.age.lab) + 
  labs(title = "New Violent Criminal Activity (NVCA)")
dev.off()

Principal strata (Figure 3)

Using one of the output ($P.R.mcmc) of CalAPCE() (or equivalently CalAPCEparallel()), CalPS() estimates the proportion of each principal stratum (\(R_i = 0, \ldots, k+1\)) and PlotPS() visualizes the results. See section 3.4 for more details about the principal strata in this context.

sample_ps = CalPS(sample_apce$P.R.mcmc)
PlotPS(sample_ps, col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)

Replication codes

To plot estimated proportion of each principal stratum as in Figure 3:

# P.R
ps_fta = CalPS(FTAace[["P.R.mcmc"]])
ps_nca = CalPS(NCAace[["P.R.mcmc"]])
ps_nvca = CalPS(NVCAace[["P.R.mcmc"]])
# Figure 3
pdf("figs/er_fta.pdf", width = 8, height = 6)
PlotPS(ps_fta, y.max = 1, top.margin = 0.08, label.size = 5.2) + 
  labs(title = "Failure to Appear (FTA)")
dev.off()
pdf("figs/er_nca.pdf", width = 8, height = 6)
PlotPS(ps_nca, y.max = 1, top.margin = 0.08, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)")
dev.off()
pdf("figs/er_nvca.pdf", width = 8, height = 6)
PlotPS(ps_nvca, y.max = 1, top.margin = 0.08, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)")
dev.off()

For subgroup analysis for age groups in Figure S7:

# P.R
ps_fta.age = CalPS(FTAace.age[["P.R.mcmc"]])
ps_nca.age = CalPS(NCAace.age[["P.R.mcmc"]])
ps_nvca.age = CalPS(NVCAace.age[["P.R.mcmc"]])
# Figure S7
pdf("figs/er_fta_age.pdf", width = 8, height = 6)
PlotPS(ps_fta.age, y.max = 1, top.margin = 0.08, label.size = 5.2) + 
  labs(title = "Failure to Appear (FTA)")
dev.off()
pdf("figs/er_nca_age.pdf", width = 8, height = 6)
PlotPS(ps_nca.age, y.max = 1, top.margin = 0.08, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)")
dev.off()
pdf("figs/er_nvca_age.pdf", width = 8, height = 6)
PlotPS(ps_nvca.age, y.max = 1, top.margin = 0.08, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)")
dev.off()

Principal fairness (Figure 5)

Using the entire output of CalAPCE() (or equivalently CalAPCEparallel()), CalFairness() computes the principal fairness and PlotFairness() visualizes the results. Please check section 3.6 for more details about the measure and see Figure 5 for example. Note that the example below is with \(k=3\), whereas the data we used in the paper has \(k=2\).

sample_fair = CalFairness(sample_apce)
PlotFairness(sample_fair, y.max = 0.4, y.min = -0.4, r.labels = c("Safe", "Preventable 1", "Preventable 2", "Preventable 3", "Risky"))

Replication codes

To plot gender and racial fairness in Figure 5:

# Fairness
resfta1 = CalFairness(FTAace, attr = c(2,3))
resfta2 = CalFairness(FTAace, attr = c(4,5))
resnca1 = CalFairness(NCAace, attr = c(2,3))
resnca2 = CalFairness(NCAace, attr = c(4,5))
resnvca1 = CalFairness(NVCAace, attr = c(2,3))
resnvca2 = CalFairness(NVCAace, attr = c(4,5))

# Figure S5
p1 <- PlotFairness(resfta1, top.margin = 0.02, y.max = 0.3) + 
  labs(title = "Failure to Appear (FTA)") + ylab("maximal sungroup difference")
p4 <- PlotFairness(resfta2, top.margin = 0.02, y.max = 0.3) + 
  labs(title = "Failure to Appear (FTA)") + ylab("maximal sungroup difference")
p2 <- PlotFairness(resnca1, top.margin = 0.02, y.max = 0.3, label = F) + 
  labs(title = "New Criminal Activity (NCA)")
p5 <- PlotFairness(resnca2, top.margin = 0.02, y.max = 0.3, label = F) + 
  labs(title = "New Criminal Activity (NCA)")
p3 <- PlotFairness(resnvca1, top.margin = 0.02, y.max = 0.3, label = F) + 
  labs(title = "New Violent Criminal Activity (NVCA)")
p6 <- PlotFairness(resnvca2, top.margin = 0.02, y.max = 0.3, label = F) + 
  labs(title = "New Violent Criminal Activity (NVCA)")

pdf("figs/fair_gender.pdf", height = 5, width = 24) 
cowplot::plot_grid(p1,p2,p3, nrow = 1)
dev.off()

pdf("figs/fair_race.pdf", height = 5, width = 24) 
cowplot::plot_grid(p4,p5,p6, nrow = 1)
dev.off()

Optimal decision (Figure 6)

CalOptimalDecision() conducts the following:

  1. Calculate optimal decision for each observation given each of \(c_0\) (cost of an outcome) and \(c_1\) (cost of an unnecessarily harsh decision) from the lists.
  2. Calculate difference in the expected utility between binary version of judge’s decisions and DMF recommendations given each of \(c_0\) and \(c_1\) from the lists.

Note that the second component is used for the comparison between the judge’s decisions and DMF recommendations explained in the following section. The main inputs are as follows:

You may also specify size, the number of parallel computing, based on the number of CPU cores. Also, if include.utility.diff.mcmc = TRUE, it would include Utility.diff.control.mcmc and Utility.diff.treated.mcmc in the output which is needed for the inference as in Figure S17. Please check the details with ?CalOptimalDecision before the analysis. Using the outputs of this function, we can visualize the results (estimated proportion of cases for which specific decision is optimal) by PlotOptimalDecision() as in Figure 6. The input is as follows:

Please check Section 3.7 and 4.4 for more details about the inference.

# ?CalOptimalDecision # Please check the details
synth_dmf = sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_optd_ci = CalOptimalDecision(data = synth, 
                                 mcmc.re = sample_mcmc, 
                                 c0.ls = seq(0,5,1), c1.ls = seq(0,5,1), 
                                 dmf = synth_dmf,
                                 include.utility.diff.mcmc = TRUE,
                                 # because of the above argument, the output is now a list 
                                 size = 2)
sample_optd = sample_optd_ci$res.i
# Suppose we want to plot the proportion of cases for which *cash bond* 
# (either d1, d2 or d3) is optimal
sample_optd$cash = sample_optd$d1 + sample_optd$d2 + sample_optd$d3
# Specify the column name of decision to be plotted, which is "cash" in this case.
PlotOptimalDecision(sample_optd, "cash") 

Replication codes

To plot estimated proportion of cases for which cash bond is optimal as in Figure 6 (and Figure S16):

# Optimal Decision
optd_fta_ci = CalOptimalDecision(data = FTAdata, mcmc.re = FTAmcmc,
                              c0.ls = seq(0,10,0.5), c1.ls = seq(0,3,0.1),
                              dmf = PSAdata$DMF,  size = 5,
                              include.utility.diff.mcmc = TRUE)
optd_nca_ci = CalOptimalDecision(data = NCAdata, mcmc.re = NCAmcmc,
                              c0.ls = seq(0,10,0.5), c1.ls = seq(0,3,0.1),
                              dmf = PSAdata$DMF,  size = 5,
                              include.utility.diff.mcmc = TRUE)
optd_nvca_ci = CalOptimalDecision(data = NVCAdata, mcmc.re = NVCAmcmc,
                               c0.ls = seq(0,10,0.5), c1.ls = seq(0,3,0.1),
                               dmf = PSAdata$DMF,  size = 5,
                               include.utility.diff.mcmc = TRUE)
optd_fta = optd_fta_ci$res.i
optd_nca = optd_nca_ci$res.i
optd_nvca = optd_nvca_ci$res.i
optd_fta$cash = optd_fta$d1 + optd_fta$d2
optd_nca$cash = optd_nca$d1 + optd_nca$d2
optd_nvca$cash = optd_nvca$d1 + optd_nvca$d2

# Figure 6
p1 <- PlotOptimalDecision(res = optd_fta, colname.d = "cash", idx = which(PSAdata$DMF == 0)) + 
  labs(title = "Failure to Appear (FTA)", x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p2 <- PlotOptimalDecision(res = optd_nca, colname.d = "cash", idx = which(PSAdata$DMF == 0)) + 
  labs(title = "New Criminal Activity (NCA)", x = expression("Cost of NCA ("*c[0]*")"), y = NULL)
p3 <- PlotOptimalDecision(res = optd_nvca, colname.d = "cash", idx = which(PSAdata$DMF == 0),
                          label.place = label_placement_fraction(0.9)) + 
  labs(title = "New Violent Criminal Activity (NVCA)", 
       x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)
p4 <- PlotOptimalDecision(res = optd_fta, colname.d = "cash", idx = which(PSAdata$DMF == 1)) + 
  labs(x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p5 <- PlotOptimalDecision(res = optd_nca, colname.d = "cash", idx = which(PSAdata$DMF == 1)) + 
  labs(x = expression("Cost of NCA ("*c[0]*")"), y =NULL)
p6 <- PlotOptimalDecision(res = optd_nvca, colname.d = "cash", idx = which(PSAdata$DMF == 1),
                          label.place = label_placement_fraction(0.9)) + 
  labs(x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)


pdf("figs/optd_combined_signature.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p1, p2, p3, nrow = 1)
dev.off()

pdf("figs/optd_combined_cash.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p4, p5, p6, nrow = 1)
dev.off()

# Figure S16
p1 <- PlotOptimalDecision(res = optd_fta, colname.d = "cash", idx = which(PSAdata$FTAScore<=4)) + 
  labs(title = "Failure to Appear (FTA)", subtitle = "FTA Score: 1 - 4", 
       x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p2 <- PlotOptimalDecision(res = optd_nca, colname.d = "cash", idx = which(PSAdata$NCAScore<=4)) + 
  labs(title = "New Criminal Activity (NCA)", subtitle = "NCA Score: 1 - 4", 
       x = "NCA Score: 1 - 4", y = NULL)
p3 <- PlotOptimalDecision(res = optd_nvca, colname.d = "cash", idx = which(PSAdata$NVCAFlag==0),
                          label.place = label_placement_fraction(0.9)) + 
  labs(title = "New Violent Criminal Activity (NVCA)", subtitle = "NVCA Flag: 0", 
       x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)
p4 <- PlotOptimalDecision(res = optd_fta, colname.d = "cash", idx = which(PSAdata$FTAScore>4)) + 
  labs(subtitle = "FTA Score: 5 - 6",  x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p5 <- PlotOptimalDecision(res = optd_nca, colname.d = "cash", idx = which(PSAdata$NCAScore>4)) + 
  labs(subtitle = "NCA Score: 5 - 6",  x = expression("Cost of NCA ("*c[0]*")"), y =NULL)
p6 <- PlotOptimalDecision(res = optd_nvca, colname.d = "cash", idx = which(PSAdata$NVCAFlag==1),
                          label.place = label_placement_fraction(0.9)) + 
  labs(subtitle = "NVCA Flag: 1", x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)


pdf("figs/optd_separate_signature.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p1, p2, p3, nrow = 1)
dev.off()

pdf("figs/optd_separate_cash.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p4, p5, p6, nrow = 1)
dev.off()

Comparison between the judge’s decisions and DMF recommendations (Figure 7)

Using the output of CalOptimalDecision(), we can compare the judge’s decisions and DMF recommendations. See Section 4.5 for more details. PlotUtilityDiff() visualizes the estimated difference in the expected utility between judge’s decisions and DMF Recommendations (e.g., Figure 7). Additionally, PlotUtilityDiffCI() plot the estimated difference with 95% confidence interval (e.g., Figure S17).

PlotUtilityDiff(sample_optd_ci$res.i)
PlotUtilityDiffCI(sample_optd_ci$res.mcmc)

Replication codes

Codes for Figure 7 and Figure S17:

# Figure 7
p1 <- PlotUtilityDiff(optd_fta, which(PSAdata$Z==1)) +
  labs(title = "Failure to Appear (FTA)", 
       x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p2 <- PlotUtilityDiff(optd_nca, which(PSAdata$Z==1)) +
  labs(title = "New Criminal Activity (NCA)", 
       x = expression("Cost of NCA ("*c[0]*")"), y = NULL)
p3 <- PlotUtilityDiff(optd_nvca, which(PSAdata$Z==1)) +
  labs(title = "New Violent Criminal Activity (NVCA)", 
       x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)
p4 <- PlotUtilityDiff(optd_fta, which(PSAdata$Z==0)) +
  labs(x = expression("Cost of FTA ("*c[0]*")"), 
       y = expression("Cost of unnecessarily harsh decision ("*c[1]*")"))
p5 <- PlotUtilityDiff(optd_nca, which(PSAdata$Z==0)) +
  labs(x = expression("Cost of NCA ("*c[0]*")"), y =NULL)
p6 <- PlotUtilityDiff(optd_nvca, which(PSAdata$Z==0)) +
  labs(x = expression("Cost of NVCA ("*c[0]*")"), y = NULL)

pdf("figs/utility_treatment.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p1, p2, p3, nrow = 1)
dev.off()

pdf("figs/utility_control.pdf", width = 16, height = 5.2)
cowplot::plot_grid(p4, p5, p6, nrow = 1)
dev.off()

# Figure S17
p.fta <- PlotUtilityDiffCI(optd_fta_ci$res.mcmc)
p.nca <- PlotUtilityDiffCI(optd_nca_ci$res.mcmc)
p.nvca <- PlotUtilityDiffCI(optd_nvca_ci$res.mcmc)
p1 <- p.fta$p.treated + labs(title = "Failure to Appear (FTA)",
                             y = "Difference in the Expected Utility",
                             x = expression("Cost of FTA ("*c[0]*")"))
p2 <- p.nca$p.treated + labs(title = "New Criminal Activity (NCA)",
                             y = "Difference in the Expected Utility",
                             x = expression("Cost of NCA ("*c[0]*")"))
p3 <- p.nvca$p.treated + labs(title = "New Violent Criminal Activity (NVCA)",
                              y = "Difference in the Expected Utility",
                              x = expression("Cost of NVCA ("*c[0]*")"))
p4 <- p.fta$p.control + labs(title = "Failure to Appear (FTA)",
                             y = "Difference in the Expected Utility",
                             x = expression("Cost of FTA ("*c[0]*")"))
p5 <- p.nca$p.control + labs(title = "New Criminal Activity (NCA)",
                             y = "Difference in the Expected Utility",
                             x = expression("Cost of NCA ("*c[0]*")"))
p6 <- p.nvca$p.control + labs(title = "New Violent Criminal Activity (NVCA)",
                              y = "Difference in the Expected Utility",
                              x = expression("Cost of NVCA ("*c[0]*")"))

pdf("figs/utility_treat_ci.pdf", width = 18, height = 6)
cowplot::plot_grid(p1, p2, p3, nrow = 1)
dev.off()

pdf("figs/utility_control_ci.pdf", width = 18, height = 6)
cowplot::plot_grid(p4, p5, p6, nrow = 1)
dev.off()

Test of spillover effects: Conditional Randomization Test (CRT)

In Appendix S3, we examine the possible existence of spillover effects using CRT. SpilloverCRT() conducts CRT based on court hearing date and additionally SpilloverCRTpower() conduct power analysis of the test using simulation. The result can be visualized using PlotSpilloverCRT() and PlotSpilloverCRTpower(). See the example below.

# CRT
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, 
                    Z = synth$Z, 
                    CourtEvent_HearingDate = hearingdate_synth,
                    n = 100) # increase the permutation size to 10000
PlotSpilloverCRT(crt)

# Power analysis
crt_power <- SpilloverCRTpower(D = synth$D, 
                               Z = synth$Z, 
                               CourtEvent_HearingDate = hearingdate_synth)
PlotSpilloverCRTpower(crt_power)

Replication codes

Codes for Figure S8 and Figure S9:

data(HearingDate)
crt_data <- data.frame(
  D = FTAdata$D,
  Z = FTAdata$Z,
  CourtEvent_HearingDate = HearingDate
)
# CRT
crt <- SpilloverCRT(D = crt_data$D, 
                    Z = crt_data$Z, 
                    CourtEvent_HearingDate = crt_data$CourtEvent_HearingDate,
                    n = 10000)
# Figure S8
pdf("figs/hist_crt.pdf", width = 4, height = 6)
PlotSpilloverCRT(crt)
dev.off()

# Power analysis
crt_power <- SpilloverCRTpower(D = crt_data$D, 
                               Z = crt_data$Z, 
                               CourtEvent_HearingDate = crt_data$CourtEvent_HearingDate,
                               size = 5,
                               n = 1000,
                               m = 1000,
                               cand_omegaZtilde = seq(-1.5, 1.5, by = 0.5))
# Figure S9
pdf("figs/crt_power_prop.pdf", width = 4, height = 6)
PlotSpilloverCRTpower(crt_power)
dev.off()

Frequentist analysis

In Appendix S7, we implement frequentist analysis and present the results. This can be done by CalAPCEipw(). Additionally, you may have to run BootstrapAPCEipw() for the confidence interval. Note that you should run CalAPCEipw() for each of subgroups, and make sure to drop the column that is constant across a specific subgroup (e.g., Sex column for the subset of Female arrestees). The result can be summarized with APCEsummaryipw() and visualized by PlotAPCE() as before.

synth$SexWhite = synth$Sex * synth$White
freq_apce = CalAPCEipw(synth)
boot_apce = BootstrapAPCEipw(synth, rep = 10)
# subgroup analysis
data_s0 = subset(synth, synth$Sex==0,select=-c(Sex,SexWhite))
freq_s0 = CalAPCEipw(data_s0)
boot_s0 = BootstrapAPCEipw(data_s0, rep = 10)
data_s1 = subset(synth, synth$Sex==1,select=-c(Sex,SexWhite))
freq_s1 = CalAPCEipw(data_s1)
boot_s1 = BootstrapAPCEipw(data_s1, rep = 10)
data_s1w0 = subset(synth, synth$Sex==1&synth$White==0,select=-c(Sex,White,SexWhite))
freq_s1w0 = CalAPCEipw(data_s1w0)
boot_s1w0 = BootstrapAPCEipw(data_s1w0, rep = 10)
data_s1w1 = subset(synth, synth$Sex==1&synth$White==1,select=-c(Sex,White,SexWhite))
freq_s1w1 = CalAPCEipw(data_s1w1)
boot_s1w1 = BootstrapAPCEipw(data_s1w1, rep = 10)

freq_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, 
                                    freq_s1w0, freq_s1w1, 
                                    boot_apce, boot_s0, boot_s1, 
                                    boot_s1w0, boot_s1w0)
PlotAPCE(freq_apce_summary, y.max = 0.25, 
         decision.labels = c("signature","small cash","middle cash","large cash"), 
         shape.values = c(16, 17, 15, 18), 
         col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)

We also fit the model including random effects for the hearing date of the case in the paper. This can be done with CalAPCEipwRE() and BootstrapAPCEipwRE()/BootstrapAPCEipwREparallel(). You may need to specify the precise formula of the model in this case.

Replication codes

Codes for Figure S10, S11, and S12.

set.seed(123) # seed for bootstrap
## Frequentist approach
# FTA
freq_apce = CalAPCEipw(FTAdata)
boot_apce = BootstrapAPCEipw(FTAdata, rep=1000)
data_s0 = subset(FTAdata, FTAdata$Sex==0,select=-c(Sex,SexWhite))
freq_s0 = CalAPCEipw(data_s0)
boot_s0 = BootstrapAPCEipw(data_s0, rep = 1000)
data_s1 = subset(FTAdata, FTAdata$Sex==1,select=-c(Sex,SexWhite))
freq_s1 = CalAPCEipw(data_s1)
boot_s1 = BootstrapAPCEipw(data_s1, rep = 1000)
data_s1w0 = subset(FTAdata, FTAdata$Sex==1&FTAdata$White==0,select=-c(Sex,White,SexWhite))
freq_s1w0 = CalAPCEipw(data_s1w0)
boot_s1w0 = BootstrapAPCEipw(data_s1w0, rep = 1000)
data_s1w1 = subset(FTAdata, FTAdata$Sex==1&FTAdata$White==1,select=-c(Sex,White,SexWhite))
freq_s1w1 = CalAPCEipw(data_s1w1)
boot_s1w1 = BootstrapAPCEipw(data_s1w1, rep = 1000)
fta_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, 
                                    freq_s1w0, freq_s1w1, 
                                    boot_apce, boot_s0, boot_s1, 
                                    boot_s1w0, boot_s1w0)
# NCA
freq_apce = CalAPCEipw(NCAdata)
boot_apce = BootstrapAPCEipw(NCAdata, rep=1000)
data_s0 = subset(NCAdata, NCAdata$Sex==0,select=-c(Sex,SexWhite))
freq_s0 = CalAPCEipw(data_s0)
boot_s0 = BootstrapAPCEipw(data_s0, rep = 1000)
data_s1 = subset(NCAdata, NCAdata$Sex==1,select=-c(Sex,SexWhite))
freq_s1 = CalAPCEipw(data_s1)
boot_s1 = BootstrapAPCEipw(data_s1, rep = 1000)
data_s1w0 = subset(NCAdata, NCAdata$Sex==1&NCAdata$White==0,select=-c(Sex,White,SexWhite))
freq_s1w0 = CalAPCEipw(data_s1w0)
boot_s1w0 = BootstrapAPCEipw(data_s1w0, rep = 1000)
data_s1w1 = subset(NCAdata, NCAdata$Sex==1&NCAdata$White==1,select=-c(Sex,White,SexWhite))
freq_s1w1 = CalAPCEipw(data_s1w1)
boot_s1w1 = BootstrapAPCEipw(data_s1w1, rep = 1000)
nca_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, 
                                    freq_s1w0, freq_s1w1, 
                                    boot_apce, boot_s0, boot_s1, 
                                    boot_s1w0, boot_s1w0)

# Figure S10
pdf("figs/qoi_fta_freq.pdf",width = 9, height = 3)
PlotAPCE(fta_freq_apce_summary, y.max = 0.23, top.margin = 0.05, bottom.margin = 0.05, 
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)") +
  theme(legend.position = "none") 
dev.off()
pdf("figs/qoi_nca_freq.pdf",width = 9, height = 3.5)
PlotAPCE(nca_freq_apce_summary, y.max = 0.23, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)") 
dev.off()

## Random effects
full.demographics = "Sex + White + SexWhite + Age"
full.other.cov = "PendingChargeAtTimeOfOffense + NCorNonViolentMisdemeanorCharge + ViolentMisdemeanorCharge + ViolentFelonyCharge + NonViolentFelonyCharge + PriorMisdemeanorConviction + PriorFelonyConviction + PriorViolentConviction + PriorSentenceToIncarceration + PriorFTAInPastTwoYears + PriorFTAOlderThanTwoYears + Staff_ReleaseRecommendation + (1|CourtEvent_HearingDate) + D"

mod = paste0("Y ~ ", full.demographics, " + ", full.other.cov)
mod.s = paste0("Y ~ White + Age + ", full.other.cov)
mod.sw = paste0("Y ~ Age + ", full.other.cov)

# FTA
freq_apce = CalAPCEipwRE(FTAdata, formula = mod)
boot_apce = BootstrapAPCEipwRE(FTAdata, rep=1000, formula = mod)
data_s0 = subset(FTAdata, FTAdata$Sex==0,select=-c(Sex,SexWhite))
freq_s0 = CalAPCEipwRE(data_s0, formula = mod.s)
boot_s0 = BootstrapAPCEipwRE(data_s0, rep = 1000, formula = mod.s)
data_s1 = subset(FTAdata, FTAdata$Sex==1,select=-c(Sex,SexWhite))
freq_s1 = CalAPCEipwRE(data_s1, formula = mod.s)
boot_s1 = BootstrapAPCEipwRE(data_s1, rep = 1000, formula = mod.s)
data_s1w0 = subset(FTAdata, FTAdata$Sex==1&FTAdata$White==0,select=-c(Sex,White,SexWhite))
freq_s1w0 = CalAPCEipwRE(data_s1w0, formula = mod.sw)
boot_s1w0 = BootstrapAPCEipwRE(data_s1w0, rep = 1000, formula = mod.sw)
data_s1w1 = subset(FTAdata, FTAdata$Sex==1&FTAdata$White==1,select=-c(Sex,White,SexWhite))
freq_s1w1 = CalAPCEipwRE(data_s1w1, formula = mod.sw)
boot_s1w1 = BootstrapAPCEipwRE(data_s1w1, rep = 1000, formula = mod.sw)
fta_re_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, 
                                    freq_s1w0, freq_s1w1, 
                                    boot_apce, boot_s0, boot_s1, 
                                    boot_s1w0, boot_s1w0)
# NCA
freq_apce = CalAPCEipwRE(NCAdata, formula = mod)
boot_apce = BootstrapAPCEipwRE(NCAdata, rep=1000, formula = mod)
data_s0 = subset(NCAdata, NCAdata$Sex==0,select=-c(Sex,SexWhite))
freq_s0 = CalAPCEipwRE(data_s0, formula = mod.s)
boot_s0 = BootstrapAPCEipwRE(data_s0, rep = 1000, formula = mod.s)
data_s1 = subset(NCAdata, NCAdata$Sex==1,select=-c(Sex,SexWhite))
freq_s1 = CalAPCEipwRE(data_s1, formula = mod.s)
boot_s1 = BootstrapAPCEipwRE(data_s1, rep = 1000, formula = mod.s)
data_s1w0 = subset(NCAdata, NCAdata$Sex==1&NCAdata$White==0,select=-c(Sex,White,SexWhite))
freq_s1w0 = CalAPCEipwRE(data_s1w0, formula = mod.sw)
boot_s1w0 = BootstrapAPCEipwRE(data_s1w0, rep = 1000, formula = mod.sw)
data_s1w1 = subset(NCAdata, NCAdata$Sex==1&NCAdata$White==1,select=-c(Sex,White,SexWhite))
freq_s1w1 = CalAPCEipwRE(data_s1w1, formula = mod.sw)
boot_s1w1 = BootstrapAPCEipwRE(data_s1w1, rep = 1000, formula = mod.sw)
nca_re_apce_summary <- APCEsummaryipw(freq_apce, freq_s0, freq_s1, 
                                    freq_s1w0, freq_s1w1, 
                                    boot_apce, boot_s0, boot_s1, 
                                    boot_s1w0, boot_s1w0)

# Figure S11
pdf("figs/qoi_fta_freq_re.pdf",width = 9, height = 3)
PlotAPCE(fta_freq_apce_summary, y.max = 0.34, top.margin = 0.1, bottom.margin = 0.1
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)") +
  theme(legend.position = "none") 
dev.off()
pdf("figs/qoi_nca_freq_re.pdf",width = 9, height = 3.5)
PlotAPCE(nca_freq_apce_summary, y.max = 0.34, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)") 
dev.off()

## Age subgroup
# FTA
data_age1 = subset(FTAdata, FTAdata$Age<=22)
freq_age1 = CalAPCEipw(data_age1)
boot_age1 = BootstrapAPCEipw(data_age1, rep = 1000)
data_age2 = subset(FTAdata, FTAdata$Age>22 & FTAdata$Age<=28)
freq_age2 = CalAPCEipw(data_age2)
boot_age2 = BootstrapAPCEipw(data_age2, rep = 1000)
data_age3 = subset(FTAdata, FTAdata$Age>28 & FTAdata$Age<=35)
freq_age3 = CalAPCEipw(data_age3)
boot_age3 = BootstrapAPCEipw(data_age3, rep = 1000)
data_age4 = subset(FTAdata, FTAdata$Age>35 & FTAdata$Age<=45)
freq_age4 = CalAPCEipw(data_age4)
boot_age4 = BootstrapAPCEipw(data_age4, rep = 1000)
data_age5 = subset(FTAdata, FTAdata$Age>45)
freq_age5 = CalAPCEipw(data_age5)
boot_age5 = BootstrapAPCEipw(data_age5, rep = 1000)
fta_apce_summary <- APCEsummaryipw(freq_age1, freq_age2,freq_age3, 
                                   freq_age4, freq_age5, 
                                   boot_age1, boot_age2,boot_age3, 
                                   boot_age4, boot_age5)
# NCA
data_age1 = subset(NCAdata, NCAdata$Age<=22)
freq_age1 = CalAPCEipw(data_age1)
boot_age1 = BootstrapAPCEipw(data_age1, rep = 1000)
data_age2 = subset(NCAdata, NCAdata$Age>22 & NCAdata$Age<=28)
freq_age2 = CalAPCEipw(data_age2)
boot_age2 = BootstrapAPCEipw(data_age2, rep = 1000)
data_age3 = subset(NCAdata, NCAdata$Age>28 & NCAdata$Age<=35)
freq_age3 = CalAPCEipw(data_age3)
boot_age3 = BootstrapAPCEipw(data_age3, rep = 1000)
data_age4 = subset(NCAdata, NCAdata$Age>35 & NCAdata$Age<=45)
freq_age4 = CalAPCEipw(data_age4)
boot_age4 = BootstrapAPCEipw(data_age4, rep = 1000)
data_age5 = subset(NCAdata, NCAdata$Age>45)
freq_age5 = CalAPCEipw(data_age5)
boot_age5 = BootstrapAPCEipw(data_age5, rep = 1000)
fta_apce_summary <- APCEsummaryipw(freq_age1, freq_age2,freq_age3, 
                                   freq_age4, freq_age5, 
                                   boot_age1, boot_age2,boot_age3, 
                                   boot_age4, boot_age5)
# Figure S12
pdf("figs/qoi_fta_freq_age.pdf",width = 9, height = 3)
PlotAPCE(fta_freq_apce_summary, y.max = 0.25, top.margin = 0.13, bottom.margin = 0.09,
         label.position = c("top", "bottom", "top", "bottom"),
         name.group = c("17~22", "23~28", "29~35", "36~45", "46~")) + 
  labs(title = "Failure to Appear (FTA)") +
  theme(legend.position = "none") 
dev.off()
pdf("figs/qoi_nca_freq_age.pdf",width = 9, height = 3.5)
PlotAPCE(nca_freq_apce_summary, y.max = 0.25, label = FALSE,
         name.group = c("17~22", "23~28", "29~35", "36~45", "46~")) + 
  labs(title = "New Criminal Activity (NCA)") 
dev.off()

Sensitivity analysis

As discussed in Section 3.5, we conduct sensitivity analysis of the unconfoundedness assumption, which may be violated when researchers do not observe some information that is used by the judge and is predictive of arrestees’ behavior. Parametric sensitivity analysis can be done by setting non-zero rho, the sensitivity parameter, for AiEvalmcmc() and CalAPCE()/CalAPCEparallel().

Replication codes

Codes for Figure S13, S14, and S15.

## rho = 0.05
## Main analysis
# MCMC
FTAmcmc = AiEvalmcmc(FTAdata,rho=0.05,n.mcmc=60000,verbose=TRUE,out.length=500)
NCAmcmc = AiEvalmcmc(NCAdata,rho=0.05,n.mcmc=60000,verbose=TRUE,out.length=500)
NVCAmcmc = AiEvalmcmc(NVCAdata,rho=0.05,n.mcmc=60000,verbose=TRUE,out.length=500)

# APCE
FTAace <- CalAPCEparallel(FTAdata,FTAmcmc,subgroup=subg,rho=0.05,burnin=2/3,size=5)
FTAqoi <- APCEsummary(FTAace[["APCE.mcmc"]])

NCAace <- CalAPCEparallel(NCAdata,NCAmcmc,subgroup=subg,rho=0.05,burnin=2/3,size=5)
NCAqoi <- APCEsummary(NCAace[["APCE.mcmc"]])

NVCAace <- CalAPCEparallel(NVCAdata,NVCAmcmc,subgroup=subg,rho=0.05,burnin=2/3,size=5)
NVCAqoi <- APCEsummary(NVCAace[["APCE.mcmc"]])

# Figure S13
pdf("figs/sens_fta_005.pdf", width = 9, height = 3)
PlotAPCE(FTAqoi, y.max = 0.18, top.margin = 0.05, bottom.margin = 0.05, 
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)", subtitle = expression(paste(rho, "= 0.05"))) +
  theme(legend.position = "none") 
dev.off()
pdf("figs/sens_nca_005.pdf", width = 9, height = 3)
PlotAPCE(NCAqoi, y.max = 0.18, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)", subtitle = expression(paste(rho, "= 0.05"))) +
  theme(legend.position = "none")
dev.off()
pdf("figs/sens_nvca_005.pdf", width = 9, height = 3.5)
PlotAPCE(NVCAqoi, y.max = 0.3, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)", subtitle = expression(paste(rho, "= 0.05")))
dev.off()

## rho = 0.1
## Main analysis
# MCMC
FTAmcmc = AiEvalmcmc(FTAdata,rho=0.1,n.mcmc=60000,verbose=TRUE,out.length=500)
NCAmcmc = AiEvalmcmc(NCAdata,rho=0.1,n.mcmc=60000,verbose=TRUE,out.length=500)
NVCAmcmc = AiEvalmcmc(NVCAdata,rho=0.1,n.mcmc=60000,verbose=TRUE,out.length=500)

# APCE
FTAace <- CalAPCEparallel(FTAdata,FTAmcmc,subgroup=subg,rho=0.1,burnin=2/3,size=5)
FTAqoi <- APCEsummary(FTAace[["APCE.mcmc"]])

NCAace <- CalAPCEparallel(NCAdata,NCAmcmc,subgroup=subg,rho=0.1,burnin=2/3,size=5)
NCAqoi <- APCEsummary(NCAace[["APCE.mcmc"]])

NVCAace <- CalAPCEparallel(NVCAdata,NVCAmcmc,subgroup=subg,rho=0.1,burnin=2/3,size=5)
NVCAqoi <- APCEsummary(NVCAace[["APCE.mcmc"]])

# Figure S14
pdf("figs/sens_fta_01.pdf", width = 9, height = 3)
PlotAPCE(FTAqoi, y.max = 0.19, top.margin = 0.05, bottom.margin = 0.05, 
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)", subtitle = expression(paste(rho, "= 0.1"))) +
  theme(legend.position = "none") 
dev.off()
pdf("figs/sens_nca_01.pdf", width = 9, height = 3)
PlotAPCE(NCAqoi, y.max = 0.19, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)", subtitle = expression(paste(rho, "= 0.1"))) +
  theme(legend.position = "none")
dev.off()
pdf("figs/sens_nvca_01.pdf", width = 9, height = 3.5)
PlotAPCE(NVCAqoi, y.max = 0.38, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)", subtitle = expression(paste(rho, "= 0.1")))
dev.off()

## rho = 0.3
## Main analysis
# MCMC
FTAmcmc = AiEvalmcmc(FTAdata,rho=0.3,n.mcmc=60000,verbose=TRUE,out.length=500)
NCAmcmc = AiEvalmcmc(NCAdata,rho=0.3,n.mcmc=60000,verbose=TRUE,out.length=500)
NVCAmcmc = AiEvalmcmc(NVCAdata,rho=0.3,n.mcmc=60000,verbose=TRUE,out.length=500)

# APCE
FTAace <- CalAPCEparallel(FTAdata,FTAmcmc,subgroup=subg,rho=0.3,burnin=2/3,size=5)
FTAqoi <- APCEsummary(FTAace[["APCE.mcmc"]])

NCAace <- CalAPCEparallel(NCAdata,NCAmcmc,subgroup=subg,rho=0.3,burnin=2/3,size=5)
NCAqoi <- APCEsummary(NCAace[["APCE.mcmc"]])

NVCAace <- CalAPCEparallel(NVCAdata,NVCAmcmc,subgroup=subg,rho=0.3,burnin=2/3,size=5)
NVCAqoi <- APCEsummary(NVCAace[["APCE.mcmc"]])

# Figure S15
pdf("figs/sens_fta_03.pdf", width = 9, height = 3)
PlotAPCE(FTAqoi, y.max = 0.16, top.margin = 0.05, bottom.margin = 0.05, 
         label.position = c("top", "bottom", "top", "bottom")) + 
  labs(title = "Failure to Appear (FTA)", subtitle = expression(paste(rho, "= 0.3"))) +
  theme(legend.position = "none") 
dev.off()
pdf("figs/sens_nca_03.pdf", width = 9, height = 3)
PlotAPCE(NCAqoi, y.max = 0.16, label = FALSE) + 
  labs(title = "New Criminal Activity (NCA)", subtitle = expression(paste(rho, "= 0.3"))) +
  theme(legend.position = "none")
dev.off()
pdf("figs/sens_nvca_03.pdf", width = 9, height = 3.5)
PlotAPCE(NVCAqoi, y.max = 0.62, label = FALSE) + 
  labs(title = "New Violent Criminal Activity (NVCA)", subtitle = expression(paste(rho, "= 0.3")))
dev.off()

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.