The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
airGRiwrm automates the execution of airGR semi-distributed models. The steps for running or calibrating the model are the same as the ones of ‘airGR’.
To run a model, as for airGR, the functions of the airGRiwrm package (e.g. the models, calibration and criteria calculation functions) require data and options with specific formats.
To facilitate the use of the package, there are several functions dedicated to the creation of these objects:
CreateInputsModel()
: prepares the inputs for the
different hydrological models (times series of dates, precipitation,
observed discharge, etc.)CreateRunOptions()
: prepares the options for the
hydrological model run (warm up period, calibration period, etc.)CreateInputsCrit()
: prepares the options in order to
compute the efficiency criterion (choice of the criterion, choice of the
transformation on discharge: “log”, “sqrt”, etc.)CreateCalibOptions()
: prepares the options for the
hydrological model calibration algorithm (choice of parameters to
optimize, predefined values for uncalibrated parameters, etc.)The method used for producing the GRiwrmInputsModel
object is detailed in the vignette “V01_Structure_SD_model” of the
package. The following code chunk resumes all the steps of this
vignette:
data(Severn)
nodes <- Severn$BasinsInfo[, c("gauge_id", "downstream_id", "distance_downstream", "area")]
nodes$model <- "RunModel_GR4J"
griwrm <- CreateGRiwrm(nodes, list(id = "gauge_id", down = "downstream_id", length = "distance_downstream"))
BasinsObs <- Severn$BasinsObs
DatesR <- BasinsObs[[1]]$DatesR
PrecipTot <- cbind(sapply(BasinsObs, function(x) {x$precipitation}))
PotEvapTot <- cbind(sapply(BasinsObs, function(x) {x$peti}))
Qobs <- cbind(sapply(BasinsObs, function(x) {x$discharge_spec}))
Precip <- ConvertMeteoSD(griwrm, PrecipTot)
PotEvap <- ConvertMeteoSD(griwrm, PotEvapTot)
InputsModel <- CreateInputsModel(griwrm, DatesR, Precip, PotEvap)
#> CreateInputsModel.GRiwrm: Processing sub-basin 54095...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54002...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54029...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54001...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54032...
#> CreateInputsModel.GRiwrm: Processing sub-basin 54057...
#> List of 6
#> $ 54095:List of 14
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 4.01 0.57 2 0.37 0.01 0.3 0.12 0 0.12 0.07 ...
#> ..$ PotEvap : num [1:11536] 0.59 1.64 1.42 0.31 0.59 0.73 0.59 0.66 0.57 0.61 ...
#> ..$ id : chr "54095"
#> ..$ down : chr "54001"
#> ..$ BasinAreas : num 3723
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54095"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:4] 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 4
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:4] "RunModel_GR4J" "InputsModel" "daily" "GR"
#> $ 54002:List of 14
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 1.58 0.47 1.35 1.92 0.06 0 0.01 0 0.08 0.34 ...
#> ..$ PotEvap : num [1:11536] 0.61 1.7 1.61 0.3 0.44 0.69 0.52 0.71 0.73 0.57 ...
#> ..$ id : chr "54002"
#> ..$ down : chr "54057"
#> ..$ BasinAreas : num 2208
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54002"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:4] 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 4
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:4] "RunModel_GR4J" "InputsModel" "daily" "GR"
#> $ 54029:List of 14
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 2.38 0.33 2.16 0.38 0.01 0.12 0.08 0.05 0.05 0.29 ...
#> ..$ PotEvap : num [1:11536] 0.58 1.64 1.49 0.23 0.56 0.72 0.63 0.72 0.62 0.64 ...
#> ..$ id : chr "54029"
#> ..$ down : chr "54032"
#> ..$ BasinAreas : num 1484
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54029"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:4] 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 4
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:4] "RunModel_GR4J" "InputsModel" "daily" "GR"
#> $ 54001:List of 19
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 1.3 0.427 2.642 0.441 0.01 ...
#> ..$ PotEvap : num [1:11536] 0.59 1.711 1.563 0.239 0.519 ...
#> ..$ Qupstream : num [1:11536, 1] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : chr "54095"
#> ..$ LengthHydro : Named num 42
#> .. ..- attr(*, "names")= chr "54095"
#> ..$ BasinAreas : Named num [1:2] 3723 607
#> .. ..- attr(*, "names")= chr [1:2] "54095" "54001"
#> ..$ id : chr "54001"
#> ..$ down : chr "54032"
#> ..$ UpstreamNodes : chr "54095"
#> ..$ UpstreamIsModeled: Named logi TRUE
#> .. ..- attr(*, "names")= chr "54095"
#> ..$ UpstreamVarQ : Named chr "Qsim_m3"
#> .. ..- attr(*, "names")= chr "54095"
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54001"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:5] "RunModel_GR4J" "InputsModel" "daily" "GR" ...
#> $ 54032:List of 19
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 1.737 0.469 2.187 1.229 0.01 ...
#> ..$ PotEvap : num [1:11536] 0.604 1.599 1.565 0.203 0.543 ...
#> ..$ Qupstream : num [1:11536, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : chr [1:2] "54029" "54001"
#> ..$ LengthHydro : Named num [1:2] 32 45
#> .. ..- attr(*, "names")= chr [1:2] "54029" "54001"
#> ..$ BasinAreas : Named num [1:3] 1484 4330 1051
#> .. ..- attr(*, "names")= chr [1:3] "54029" "54001" "54032"
#> ..$ id : chr "54032"
#> ..$ down : chr "54057"
#> ..$ UpstreamNodes : chr [1:2] "54029" "54001"
#> ..$ UpstreamIsModeled: Named logi [1:2] TRUE TRUE
#> .. ..- attr(*, "names")= chr [1:2] "54029" "54001"
#> ..$ UpstreamVarQ : Named chr [1:2] "Qsim_m3" "Qsim_m3"
#> .. ..- attr(*, "names")= chr [1:2] "54029" "54001"
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54032"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:5] "RunModel_GR4J" "InputsModel" "daily" "GR" ...
#> $ 54057:List of 19
#> ..$ DatesR : POSIXlt[1:11536], format: "1984-03-01" "1984-03-02" ...
#> ..$ Precip : num [1:11536] 1.523 0.179 1.536 1.545 0 ...
#> ..$ PotEvap : num [1:11536] 0.536 1.599 1.576 0.31 0.437 ...
#> ..$ Qupstream : num [1:11536, 1:2] 0 0 0 0 0 0 0 0 0 0 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : NULL
#> .. .. ..$ : chr [1:2] "54002" "54032"
#> ..$ LengthHydro : Named num [1:2] 43 15
#> .. ..- attr(*, "names")= chr [1:2] "54002" "54032"
#> ..$ BasinAreas : Named num [1:3] 2208 6865 813
#> .. ..- attr(*, "names")= chr [1:3] "54002" "54032" "54057"
#> ..$ id : chr "54057"
#> ..$ down : chr NA
#> ..$ UpstreamNodes : chr [1:2] "54002" "54032"
#> ..$ UpstreamIsModeled: Named logi [1:2] TRUE TRUE
#> .. ..- attr(*, "names")= chr [1:2] "54002" "54032"
#> ..$ UpstreamVarQ : Named chr [1:2] "Qsim_m3" "Qsim_m3"
#> .. ..- attr(*, "names")= chr [1:2] "54002" "54032"
#> ..$ FUN_MOD : chr "RunModel_GR4J"
#> ..$ inUngaugedCluster: logi FALSE
#> ..$ isReceiver : logi FALSE
#> ..$ gaugedId : chr "54057"
#> ..$ hasUngaugedNodes : logi FALSE
#> ..$ model :List of 4
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> ..$ hasDiversion : logi FALSE
#> ..$ isReservoir : logi FALSE
#> ..- attr(*, "class")= chr [1:5] "RunModel_GR4J" "InputsModel" "daily" "GR" ...
#> - attr(*, "class")= chr [1:2] "GRiwrmInputsModel" "list"
#> - attr(*, "GRiwrm")=Classes 'GRiwrm' and 'data.frame': 6 obs. of 6 variables:
#> ..$ id : chr [1:6] "54095" "54002" "54029" "54001" ...
#> ..$ down : chr [1:6] "54001" "54057" "54032" "54032" ...
#> ..$ length: num [1:6] 42 43 32 45 15 NA
#> ..$ area : num [1:6] 3723 2208 1484 4330 6865 ...
#> ..$ model : chr [1:6] "RunModel_GR4J" "RunModel_GR4J" "RunModel_GR4J" "RunModel_GR4J" ...
#> ..$ donor : chr [1:6] "54095" "54002" "54029" "54001" ...
#> - attr(*, "TimeStep")= num 86400
The CreateRunOptions()
function allows to prepare the
options required for the RunModel()
function.
The user must at least define the following arguments:
InputsModel
: the associated input dataIndPeriod_Run
: the period on which the model is
runBelow, we define a one-year warm up period and we start the run period just after the warm up period.
IndPeriod_Run <- seq(
which(InputsModel[[1]]$DatesR == (InputsModel[[1]]$DatesR[1] + 365*24*60*60)), # Set aside warm-up period
length(InputsModel[[1]]$DatesR) # Until the end of the time series
)
IndPeriod_WarmUp <- seq(1, IndPeriod_Run[1] - 1)
Arguments of the CreateRunOptions
function for
airGRiwrm are the same as for the function in
airGR and are copied for each node running a
rainfall-runoff model.
The CreateInputsCrit()
function allows to prepare the
input in order to calculate a criterion. We use composed criterion with
a parameter regularization based on @delavenneRegularizationApproachImprove2019.
It needs the following arguments:
InputsModel
: the inputs of the GRiwrm
network previously prepared by the CreateInputsModel()
functionFUN_CRIT
: the name of the error criterion function (see
the available functions description in the airGR
package)RunOptions
: the options of the GRiwrm
network previously prepared by the CreateRunOptions()
functionQobs
: the observed variable time series (e.g. the
discharge expressed in mm/time step)AprioriIds
: the list of the sub-catchments IDs where to
apply a parameter regularization based on the parameters of an upstream
sub-catchment (e.g. here below the parameters of the sub-catchment
“54057” is regulated by the parameters of the sub-catchment
“54032”)transfo
: a transformation function applied on the flow
before calculation of the criterion (square-root transformation is
recommended for the De Lavenne regularization)k
: coefficient used for the weighted average between
the performance criterion and the gap between the optimized parameter
set and an a priori parameter set (a value equal to 0.15 is recommended
for the De Lavenne regularization)InputsCrit <- CreateInputsCrit(
InputsModel = InputsModel,
FUN_CRIT = ErrorCrit_KGE2,
RunOptions = RunOptions,
Obs = Qobs[IndPeriod_Run, ],
AprioriIds = c(
"54057" = "54032",
"54032" = "54001",
"54001" = "54095"
),
transfo = "sqrt",
k = 0.15
)
str(InputsCrit)
#> List of 6
#> $ 54095:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.19 1.17 1.25 1.51 2.05 1.61 1.34 1.34 1.17 1.06 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:2] "Single" "InputsCrit"
#> $ 54002:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.09 1.13 1.07 1.04 0.82 0.68 0.87 0.88 0.77 0.68 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:2] "Single" "InputsCrit"
#> $ 54029:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.37 1.31 1.52 1.6 1.29 1.14 1.45 1.47 1.23 1.12 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:2] "Single" "InputsCrit"
#> $ 54001:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.1 1.05 1.19 1.29 1.77 1.49 1.31 1.27 1.1 0.97 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:3] "InputsCritLavenneFunction" "Single" "InputsCrit"
#> ..- attr(*, "Lavenne_FUN")=function (AprParamR, AprCrit)
#> ..- attr(*, "AprioriId")= Named chr "54095"
#> .. ..- attr(*, "names")= chr "54001"
#> ..- attr(*, "AprCelerity")= num 1
#> ..- attr(*, "model")=List of 5
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> .. ..$ X4Ratio : num 0.58
#> $ 54032:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.19 1.19 1.23 1.35 1.43 1.37 1.32 1.35 1.21 1.07 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:3] "InputsCritLavenneFunction" "Single" "InputsCrit"
#> ..- attr(*, "Lavenne_FUN")=function (AprParamR, AprCrit)
#> ..- attr(*, "AprioriId")= Named chr "54001"
#> .. ..- attr(*, "names")= chr "54032"
#> ..- attr(*, "AprCelerity")= num 1
#> ..- attr(*, "model")=List of 5
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> .. ..$ X4Ratio : num 1.18
#> $ 54057:List of 8
#> ..$ FUN_CRIT:function (InputsCrit, OutputsModel, warnings = TRUE, verbose = TRUE)
#> .. ..- attr(*, "class")= chr [1:2] "FUN_CRIT" "function"
#> ..$ Obs : num [1:11171] 1.06 1.1 1.09 1.22 1.23 1.21 1.18 1.25 1.13 0.98 ...
#> ..$ VarObs : chr "Q"
#> ..$ BoolCrit: logi [1:11171] TRUE TRUE TRUE TRUE TRUE TRUE ...
#> ..$ idLayer : logi NA
#> ..$ transfo : chr "sqrt"
#> ..$ epsilon : NULL
#> ..$ Weights : NULL
#> ..- attr(*, "class")= chr [1:3] "InputsCritLavenneFunction" "Single" "InputsCrit"
#> ..- attr(*, "Lavenne_FUN")=function (AprParamR, AprCrit)
#> ..- attr(*, "AprioriId")= Named chr "54032"
#> .. ..- attr(*, "names")= chr "54057"
#> ..- attr(*, "AprCelerity")= num 1
#> ..- attr(*, "model")=List of 5
#> .. ..$ indexParamUngauged: num [1:5] 1 2 3 4 5
#> .. ..$ hasX4 : logi TRUE
#> .. ..$ iX4 : num 5
#> .. ..$ IsHyst : logi FALSE
#> .. ..$ X4Ratio : num 0.926
#> - attr(*, "class")= chr [1:2] "GRiwrmInputsCrit" "list"
The airGR calibration process is applied on each
node of the GRiwrm
network from upstream nodes to
downstream nodes.
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54095'...
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (81 runs)
#> Param = 247.151, -0.020, 83.096, 2.384
#> Crit. KGE2[sqrt(Q)] = 0.9507
#> Steepest-descent local search in progress
#> Calibration completed (37 iterations, 377 runs)
#> Param = 305.633, 0.061, 48.777, 2.733
#> Crit. KGE2[sqrt(Q)] = 0.9578
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54002'...
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (81 runs)
#> Param = 432.681, -0.020, 20.697, 1.944
#> Crit. KGE2[sqrt(Q)] = 0.9264
#> Steepest-descent local search in progress
#> Calibration completed (18 iterations, 209 runs)
#> Param = 389.753, 0.085, 17.870, 2.098
#> Crit. KGE2[sqrt(Q)] = 0.9370
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54029'...
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (81 runs)
#> Param = 247.151, -0.020, 42.098, 1.944
#> Crit. KGE2[sqrt(Q)] = 0.9541
#> Steepest-descent local search in progress
#> Calibration completed (32 iterations, 333 runs)
#> Param = 214.204, -0.119, 46.754, 2.022
#> Crit. KGE2[sqrt(Q)] = 0.9696
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54001'...
#> Parameter regularization: get a priori parameters from node 54095: 1, 305.633, 0.061, 48.777, 1.587
#> Crit. KGE2[sqrt(Q)] = 0.9578
#> SubCrit. KGE2[sqrt(Q)] cor(sim, obs, "pearson") = 0.9579
#> SubCrit. KGE2[sqrt(Q)] cv(sim)/cv(obs) = 1.0023
#> SubCrit. KGE2[sqrt(Q)] mean(sim)/mean(obs) = 1.0007
#>
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (243 runs)
#> Param = 1.250, 247.151, -2.376, 20.697, 1.417
#> Crit. Composite = 0.9424
#> Steepest-descent local search in progress
#> Calibration completed (24 iterations, 460 runs)
#> Param = 1.210, 301.871, -3.005, 15.029, 1.622
#> Crit. Composite = 0.9429
#> Formula: sum(0.86 * KGE2[sqrt(Q)], 0.14 * GAPX[ParamT])
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54032'...
#> Parameter regularization: get a priori parameters from node 54001: 1.21, 301.871, -3.005, 15.029, 1.913
#> Crit. KGE2[sqrt(Q)] = 0.9521
#> SubCrit. KGE2[sqrt(Q)] cor(sim, obs, "pearson") = 0.9608
#> SubCrit. KGE2[sqrt(Q)] cv(sim)/cv(obs) = 0.9985
#> SubCrit. KGE2[sqrt(Q)] mean(sim)/mean(obs) = 1.0274
#>
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (243 runs)
#> Param = 1.250, 432.681, -2.376, 83.096, 1.944
#> Crit. Composite = 0.9539
#> Steepest-descent local search in progress
#> Calibration completed (30 iterations, 521 runs)
#> Param = 1.200, 1164.445, -1.222, 24.047, 1.837
#> Crit. Composite = 0.9603
#> Formula: sum(0.86 * KGE2[sqrt(Q)], 0.14 * GAPX[ParamT])
#> Calibration.GRiwrmInputsModel: Processing sub-basin '54057'...
#> Parameter regularization: get a priori parameters from node 54032: 1.2, 1164.445, -1.222, 24.047, 1.7
#> Crit. KGE2[sqrt(Q)] = 0.9673
#> SubCrit. KGE2[sqrt(Q)] cor(sim, obs, "pearson") = 0.9683
#> SubCrit. KGE2[sqrt(Q)] cv(sim)/cv(obs) = 1.0078
#> SubCrit. KGE2[sqrt(Q)] mean(sim)/mean(obs) = 1.0007
#>
#> Grid-Screening in progress (0% 20% 40% 60% 80% 100%)
#> Screening completed (243 runs)
#> Param = 1.250, 432.681, -0.649, 20.697, 1.944
#> Crit. Composite = 0.9582
#> Steepest-descent local search in progress
#> Calibration completed (29 iterations, 512 runs)
#> Param = 1.200, 1164.445, -1.222, 24.047, 1.700
#> Crit. Composite = 0.9645
#> Formula: sum(0.85 * KGE2[sqrt(Q)], 0.15 * GAPX[ParamT])
OutputsModels <- RunModel(
InputsModel,
RunOptions = RunOptions,
Param = extractParam(OutputsCalib)
)
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54095...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54002...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54029...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54001...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54032...
#> RunModel.GRiwrmInputsModel: Processing sub-basin 54057...
The resulting flows of each node in m3/s are directly available and can be plotted with these commands:
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.