The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Type: Package
Title: Bayesian Estimation for Alpha-Mixture Survival Models
Version: 0.1.0
Description: Implements Bayesian estimation and inference for alpha-mixture survival models, including Weibull and Exponential based components, with tools for simulation and posterior summaries. The methods target applications in reliability and biomedical survival analysis. The package implements Bayesian estimation for the alpha-mixture methodology introduced in Asadi et al. (2019) <doi:10.1017/jpr.2019.72>.
Maintainer: Feng Luan <fluan1@niu.edu>
Imports: MCMCpack, stats, utils, gtools
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.3
LazyData: true
LazyDataCompression: xz
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2025-10-17 19:22:24 UTC; feng
Author: Feng Luan [aut, cre], Zhexuan Yang [aut], Duchwan Ryu [aut]
Depends: R (≥ 3.5.0)
Repository: CRAN
Date/Publication: 2025-10-22 18:40:02 UTC

Main Bayesian Mixture Model Function

Description

Main Bayesian Mixture Model Function

Usage

alpmixBayes(
  d,
  mcmc_values = NULL,
  init_values = NULL,
  prior = NULL,
  survmodel = c("WW", "EW", "LL", "EWG"),
  verbose = TRUE,
  ...
)

Arguments

d

Input data

mcmc_values

MCMC parameters

init_values

Initial values

prior

Prior distributions

survmodel

Survival model type

verbose

Logical. If TRUE, progress messages are printed. Default is TRUE.

...

Additional arguments

Value

Bayesian mixture model results


Run a demo of alpmixBayes

Description

This runs alpmixBayes on the packaged example dataset ewm1.100.

Usage

demo_run(verbose = TRUE)

Arguments

verbose

Logical. If TRUE, progress messages are printed. Default is TRUE.

Value

Summary of the Bayesian mixture model

Examples


# Run the demo (may take a few moments)
demo_run()


Error result handler

Description

Creates a structured error result when model fitting fails

Usage

error_result(model, message, verbose = TRUE)

Arguments

model

Model type

message

Error message

Value

Structured error result


EW Mixture Model Dataset

Description

Demonstration dataset for Exponential-Weibull mixture models. Contains 5 simulated datasets for examples and testing.

Usage

ew

Format

A list with 5 components, each containing mixture model data

Source

Simulated data


EWG Mixture Model Dataset

Description

Demonstration dataset for Exponential-Weibull-Gamma mixture models. Contains 5 simulated datasets for examples and testing.

Usage

ewg

Format

A list with 5 components, each containing:

Source

Simulated data

Examples

data(ewg)
str(ewg, max.level = 1)
# Extract data from first element
y_data <- ewg[[1]]$y

Exponential-Weibull-Gamma Mixture Model

Description

Exponential-Weibull-Gamma Mixture Model

Usage

ewgmix(d, init_values, mcmc_values, prior)

Arguments

d

Input data

init_values

Initial values

mcmc_values

MCMC parameters

prior

Prior distributions

Value

Model results


Exponential-Weibull Mixture Model

Description

Exponential-Weibull Mixture Model

Usage

ewmix(d, init_values, mcmc_values, prior)

Arguments

d

Input data

init_values

Initial values

mcmc_values

MCMC parameters

prior

Prior distributions

Value

Model results


Global variable declarations

Description

Declare global variables to avoid R CMD check notes


LL Mixture Model Dataset

Description

Demonstration dataset for Log-Logistic mixture models. Contains 5 simulated datasets for examples and testing.

Usage

ll

Format

A list with 5 components, each containing mixture model data

Source

Simulated data


Lognormal-Lognormal Mixture Model

Description

Lognormal-Lognormal Mixture Model

Usage

llmix(d, init_values, mcmc_values, prior)

Arguments

d

Input data

init_values

Initial values

mcmc_values

MCMC parameters

prior

Prior distributions

Value

Model results


Summary method for alpmixBayes objects

Description

Summary method for alpmixBayes objects

Usage

## S3 method for class 'alpmixBayes'
summary(object, ...)

Arguments

object

An alpmixBayes object

...

Additional arguments passed to summary

Value

A data frame with parameter estimates and credible intervals


WW Mixture Model Dataset

Description

Demonstration dataset for Weibull mixture models. Contains 5 simulated datasets for examples and testing.

Usage

ww

Format

A list with 5 components, each containing mixture model data

Source

Simulated data


Weibull-Weibull Mixture Model

Description

Weibull-Weibull Mixture Model

Usage

wwmix(d, init_values, mcmc_values, prior)

Arguments

d

Input data

init_values

Initial values

mcmc_values

MCMC parameters

prior

Prior distributions

Value

Model results

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.