The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Uses an alternating manifold proximal gradient (AManPG) method to find sparse principal components from the given data or covariance matrix.
Only base R is required to be installed.
spca.amanpg(z, lambda1, lambda2, f_palm = 1e5, x0 = NULL, y0 = NULL, k = 0, type = 0, gamma = 0.5,
maxiter = 1e4, tol = 1e-5, normalize = TRUE, verbose = FALSE)
Name | Type | Description |
---|---|---|
z |
matrix | Either the data matrix or sample covariance matrix |
lambda1 |
matrix | List of parameters of length n for L1-norm penalty |
lambda2 |
double | L2-norm penalty term |
f_palm |
double | Upper bound for the gradient value to reach convergence, default value is 1e5 |
x0 |
matrix | Initial x-values for the gradient method, default value is the first n right singular vectors |
y0 |
matrix | Initial y-values for the gradient method, default value is the first n right singular vectors |
k |
integer | Number of principal components desired, default is 0 (returns min(n-1, p) principal components) |
type |
integer | If 0, b is expected to be a data matrix, and otherwise b is expected to be a covariance matrix; default is 0 |
gamma |
double | Parameter to control how quickly the step size changes in each iteration, default is 0.5 |
maxiter |
integer | Maximum number of iterations allowed in the gradient method, default is 1e4 |
tol |
double | Tolerance value required to indicate convergence (calculated as difference between iteration f-values), default is 1e-5 |
normalize |
logical | Center and normalize rows to Euclidean length 1 if True, default is True |
verbose |
logical | Function prints progress between iterations if True, default is False |
Returns a dictionary with the following key-value pairs:
Key | Value Type | Value |
---|---|---|
iter |
integer | Total number of iterations executed |
f_manpg |
double | Final gradient value |
sparsity |
float | Number of sparse loadings (loadings == 0) divided by number of all loadings |
time |
double | Number of seconds for execution |
x |
matrix | Corresponding ndarray in subproblem to the loadings |
loadings |
matrix | Loadings of the sparse principal components |
Shixiang Chen, Justin Huang, Benjamin Jochem, Shiqian Ma, Lingzhou Xue and Hui Zou
Chen, S., Ma, S., Xue, L., and Zou, H. (2020) “An Alternating Manifold Proximal Gradient Method for Sparse Principal Component Analysis and Sparse Canonical Correlation Analysis” INFORMS Journal on Optimization 2:3, 192-208
Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286.
Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311-1320.
See SPCA.R
for a more in-depth example.
library('SPCA')
#see SPCA.R for a more in-depth example
<- 500 # dimension
d <- 1000 # sample size
m set.seed(10)
<- normalize(matrix(rnorm(m * d), m, d))
a <- 0.1 * matrix(data=1, nrow=4, ncol=1)
lambda1 <- svd(a, nv=4)$v
x0 <- spca.amanpg(a, lambda1, lambda2=Inf, f_palm=1e5, x0=x0, y0=x0, k=4, type=0, gamma=0.5,
sprout maxiter=1e4, tol=1e-5, normalize = FALSE, verbose=FALSE)
print(paste(sprout$iter, "iterations,", sprout$sparsity, "sparsity,", sprout$time))
#extract loadings
#print(sprout$loadings)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.