The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The anthro
package allows you to perform comprehensive
analysis of anthropometric survey data based on the method
developed by the Department of Nutrition for Health and Development at
the World Health Organization.
The package is modeled after the original R macros provided by WHO. In addition to z-scores, the package adds more accurate calculations of confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs, whenever is the case by using the survey package.
install.packages("anthro")
::install_github("worldhealthorganization/anthro") remotes
library(anthro)
This function calculates z-scores for the eight anthropometric indicators, weight-for- age, length/height-for-age, weight-for-length/height, body mass index (BMI)-for-age, head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age based on the WHO Child Growth Standards.
anthro_zscores(
sex = c(1, 2, 1, 1),
age = c(1001, 1000, 1010, 1000),
weight = c(18, 15, 10, 15),
lenhei = c(120, 80, 100, 100)
)#> clenhei cbmi cmeasure csex zlen flen zwei fwei zwfl fwfl zbmi fbmi zhc
#> 1 120 12.5000 <NA> 1 7.31 1 2.20 0 -2.39 0 -3.01 0 NA
#> 2 80 23.4375 <NA> 2 -3.50 0 0.95 0 4.13 0 4.66 0 NA
#> 3 100 10.0000 <NA> 1 1.62 0 -2.76 0 -5.19 1 -5.61 1 NA
#> 4 100 15.0000 <NA> 1 1.70 0 0.69 0 -0.29 0 -0.58 0 NA
#> fhc zac fac zts fts zss fss
#> 1 NA NA NA NA NA NA NA
#> 2 NA NA NA NA NA NA NA
#> 3 NA NA NA NA NA NA NA
#> 4 NA NA NA NA NA NA NA
The returned value is a data.frame
that can further be
processed or saved as a .csv
file as in the original
function.
You can also use the function with a given dataset with
with
<- read.csv("my_survey.csv")
your_data_set with(
your_data_set,anthro_zscores(
sex = sex, age = age_in_days,
weight = weight, lenhei = lenhei
) )
To look at all parameters, type ?anthro_zscores
.
The prevalence estimates are similar to anthro_zscores
:
again they take vectors instead of a data frame and column names for the
aforementioned reasons.
anthro_prevalence(
sex = c(1, 2, 2, 1),
age = c(1001, 1000, 1010, 1000),
weight = c(18, 15, 10, 15),
lenhei = c(100, 80, 100, 100)
1:5]
)[, #> Group HAZ_pop HAZ_unwpop HA_3_r HA_3_se
#> 1 All 4 4 25 25.00000
#> 2 Age group: 00-05 mo 0 0 NA NA
#> 3 Age group: 06-11 mo 0 0 NA NA
#> 4 Age group: 12-23 mo 0 0 NA NA
#> 5 Age group: 24-35 mo 4 4 25 25.00000
#> 6 Age group: 36-47 mo 0 0 NA NA
#> 7 Age group: 48-59 mo 0 0 NA NA
#> 8 Sex: Female 2 2 50 40.82483
#> 9 Sex: Male 2 2 0 0.00000
#> 10 Age + sex: 00-05 mo.Female 0 0 NA NA
#> 11 Age + sex: 06-11 mo.Female 0 0 NA NA
#> 12 Age + sex: 12-23 mo.Female 0 0 NA NA
#> 13 Age + sex: 24-35 mo.Female 2 2 50 40.82483
#> 14 Age + sex: 36-47 mo.Female 0 0 NA NA
#> 15 Age + sex: 48-59 mo.Female 0 0 NA NA
#> 16 Age + sex: 00-05 mo.Male 0 0 NA NA
#> 17 Age + sex: 06-11 mo.Male 0 0 NA NA
#> 18 Age + sex: 12-23 mo.Male 0 0 NA NA
#> 19 Age + sex: 24-35 mo.Male 2 2 0 0.00000
#> 20 Age + sex: 36-47 mo.Male 0 0 NA NA
#> 21 Age + sex: 48-59 mo.Male 0 0 NA NA
Using the function with
it is easy to apply
anthro_prevalence
to a full dataset.
To look at all parameters, type ?anthro_prevalence
.
Contributions in the form of issues are very welcome. In particular if you find any bugs.
The package has been tested thoroughly, but we cannot guarantee that there aren’t any bugs nor comes this with any warranty. If you find a bug or cannot reproduce results obtained with other implementations, please post an issue.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.