The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

ARLClustering - Testing LesMiserables dataset

library(arlclustering)

Dataset description

The LesMiserables network dataset is provided as a gml file, containing 77 nodes and 254 edges.

Loading network dataset

# Start the timer
t1 <- system.time({
dataset_path <- system.file("extdata", "lesmiserables.gml", package = "arlclustering")
if (dataset_path == "") {
  stop("lesmiserables.gml file not found")
}

g <- arlc_get_network_dataset(dataset_path, "LesMiserables")
  g$graphLabel
  g$totalEdges
  g$totalNodes
  g$averageDegree
})

# Display the total processing time
message("Graph loading Processing Time: ", t1["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.0140000000000029 seconds

Generate Transactions

Next, we generate transactions from the graph, with a total rows of 59

# Start the timer
t2 <- system.time({
  transactions <- arlc_gen_transactions(g$graph)
  transactions
})

# Display the total processing time
message("Transaction dataset Processing Time: ", t2["elapsed"], " seconds\n")
#> Transaction dataset Processing Time: 0.0069999999999979 seconds

Get Apriori Thresholds

We obtain the apriori thresholds for the generated transactions. The following are the thresholds for the apriori execution: - The Minimum Support : 0.04 - The Minimum Confidence : 0.5 - The Lift : 19.66667 - The Gross Rules length : 51764 - The selection Ratio : 877

# Start the timer
t3 <- system.time({
  params <- arlc_get_apriori_thresholds(transactions,
                                      supportRange = seq(0.04, 0.06, by = 0.01),
                                      Conf = 0.5)
  params$minSupp
  params$minConf
  params$bestLift
  params$lenRules
  params$ratio
})

# Display the total processing time
message("Graph loading Processing Time: ", t3["elapsed"], " seconds\n")
#> Graph loading Processing Time: 0.141999999999999 seconds

Generate Gross Rules

We use the obtained parameters to generate gross rules, where we obtain 51774 rules.

# Start the timer
t4 <- system.time({
  minLenRules <- 1
  maxLenRules <- params$lenRules
  if (!is.finite(maxLenRules) || maxLenRules > 5*length(transactions)) {
    maxLenRules <- 5*length(transactions)
  }

  grossRules <- arlc_gen_gross_rules(transactions,
                                     minSupp = params$minSupp,
                                     minConf = params$minConf,
                                     minLenRules = minLenRules+1,
                                     maxLenRules = maxLenRules)
  grossRules$TotalRulesWithLengthFilter
})
#> Apriori
#> 
#> Parameter specification:
#>  confidence minval smax arem  aval originalSupport maxtime support minlen
#>         0.5    0.1    1 none FALSE            TRUE       5    0.04      2
#>  maxlen target  ext
#>     295  rules TRUE
#> 
#> Algorithmic control:
#>  filter tree heap memopt load sort verbose
#>     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
#> 
#> Absolute minimum support count: 2 
#> 
#> set item appearances ...[0 item(s)] done [0.00s].
#> set transactions ...[77 item(s), 59 transaction(s)] done [0.00s].
#> sorting and recoding items ... [50 item(s)] done [0.00s].
#> creating transaction tree ... done [0.00s].
#> checking subsets of size 1 2 3 4 5 6 7 8 9 10 11 done [0.00s].
#> writing ... [51774 rule(s)] done [0.01s].
#> creating S4 object  ... done [0.01s].
# Display the total number of clusters and the total processing time
message("Gross rules generation Time: ", t4["elapsed"], " seconds\n")
#> Gross rules generation Time: 0.0599999999999987 seconds

Filter Significant and Non-Redundant Rules

We filter out redundant rules from the generated gross rules. Next, we filter out non-significant rules from the non-redundant rules, and we obtain the 1625 rule items.

t5 <- system.time({
  NonRedRules <- arlc_get_NonR_rules(grossRules$GrossRules)
  NonRSigRules <- arlc_get_significant_rules(transactions,
                                             NonRedRules$FiltredRules)
  #NonRSigRules$TotFiltredRules
})
# Display the total number of clusters and the total processing time
message("\nClearing rules Processing Time: ", t5["elapsed"], " seconds\n")
#> 
#> Clearing rules Processing Time: 0.330000000000002 seconds

Clean and genarate final Rules

We clean the final set of rules to prepare for clustering. Then, we generate clusters based on the cleaned rules. The total identified clusters is 7 clusters.

t6 <- system.time({
  cleanedRules <- arlc_clean_final_rules(NonRSigRules$FiltredRules)
  clusters <- arlc_generate_clusters(cleanedRules)
  #clusters$TotClusters
})
# Display the total number of clusters and the total processing time
message("Cleaning final rules Processing Time: ", t6["elapsed"], " seconds\n")
#> Cleaning final rules Processing Time: 0.0990000000000002 seconds

message("The total comsumed time is:",t1["elapsed"]+ t2["elapsed"]+t3["elapsed"]+t4["elapsed"]+t5["elapsed"]+t6["elapsed"], "seconds\n")
#> The total comsumed time is:0.652000000000001seconds

Plot Clusters

Finally, we visualize the identified clusters.

arlc_clusters_plot(g$graph,
                   g$graphLabel,
                   clusters$Clusters)
#> 
#> Total Identified Clusters: 7
#>  =========================
#>   Community 01:12 17 24 25 26 27 28 30 35 36 37 38 39 42 49 50 52 55 56 58 59 60 61 62 63 64 65 66 67 69 70 71 72 76 77
#>   Community 02:17 18 19 20 21 22 23 24
#>   Community 03:24 25 26 27 28 32 49 56 69 70 71 72
#>   Community 04:25 26 27 28 30 32 42 44 49 56 59 69 70 71 72 73 76
#>   Community 05:26 27 28 30 32 42 44 49 50 52 56 58 59 63 65 69 70 71 72 73 76
#>   Community 06:30 32 35 36 37 38 39
#>   Community 07:43 69 70 71
#>  =========================

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.