The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
modelsum
objects togethermodelsum
within an Sweave documentmodelsum
results to a .CSV filemodelsum
object to a separate Word or HTML filemodelsum
in R Shinymodelsum
in bookdownVery often we are asked to summarize model results from multiple fits into a nice table. The endpoint might be of different types (e.g., survival, case/control, continuous) and there may be several independent variables that we want to examine univariately or adjusted for certain variables such as age and sex. Locally at Mayo, the SAS macros %modelsum
, %glmuniv
, and %logisuni
were written to create such summary tables. With the increasing interest in R, we have developed the function modelsum
to create similar tables within the R environment.
In developing the modelsum
function, the goal was to bring the best features of these macros into an R function. However, the task was not simply to duplicate all the functionality, but rather to make use of R’s strengths (modeling, method dispersion, flexibility in function definition and output format) and make a tool that fits the needs of R users. Additionally, the results needed to fit within the general reproducible research framework so the tables could be displayed within an R markdown report.
This report provides step-by-step directions for using the functions associated with modelsum
. All functions presented here are available within the arsenal
package. An assumption is made that users are somewhat familiar with R markdown documents. For those who are new to the topic, a good initial resource is available at rmarkdown.rstudio.com.
The first step when using the modelsum
function is to load the arsenal
package. All the examples in this report use a dataset called mockstudy
made available by Paul Novotny which includes a variety of types of variables (character, numeric, factor, ordered factor, survival) to use as examples.
> require(arsenal)
> data(mockstudy) # load data
> dim(mockstudy) # look at how many subjects and variables are in the dataset
1] 1499 14
[> # help(mockstudy) # learn more about the dataset and variables
> str(mockstudy) # quick look at the data
'data.frame': 1499 obs. of 14 variables:
$ case : int 110754 99706 105271 105001 112263 86205 99508 90158 88989 90515 ...
$ age : int 67 74 50 71 69 56 50 57 51 63 ...
- attr(*, "label")= chr "Age in Years"
..$ arm : chr "F: FOLFOX" "A: IFL" "A: IFL" "G: IROX" ...
- attr(*, "label")= chr "Treatment Arm"
..$ sex : Factor w/ 2 levels "Male","Female": 1 2 2 2 2 1 1 1 2 1 ...
$ race : chr "Caucasian" "Caucasian" "Caucasian" "Caucasian" ...
- attr(*, "label")= chr "Race"
..$ fu.time : int 922 270 175 128 233 120 369 421 387 363 ...
$ fu.stat : int 2 2 2 2 2 2 2 2 2 2 ...
$ ps : int 0 1 1 1 0 0 0 0 1 1 ...
$ hgb : num 11.5 10.7 11.1 12.6 13 10.2 13.3 12.1 13.8 12.1 ...
$ bmi : num 25.1 19.5 NA 29.4 26.4 ...
- attr(*, "label")= chr "Body Mass Index (kg/m^2)"
..$ alk.phos : int 160 290 700 771 350 569 162 152 231 492 ...
$ ast : int 35 52 100 68 35 27 16 12 25 18 ...
$ mdquality.s: int NA 1 1 1 NA 1 1 1 1 1 ...
$ age.ord : Ord.factor w/ 8 levels "10-19"<"20-29"<..: 6 7 4 7 6 5 4 5 5 6 ...
To create a simple linear regression table (the default), use a formula statement to specify the variables that you want summarized. The example below predicts BMI with the variables sex and age.
> tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
If you want to take a quick look at the table, you can use summary
on your modelsum object and the table will print out as text in your R console window. If you use summary
without any options you will see a number of \(\ \) statements which translates to “space” in HTML.
If you want a nicer version in your console window then adding the text=TRUE
option.
> summary(tab1, text=TRUE)
| |estimate |std.error |p.value |adj.r.squared |Nmiss |
|:------------|:--------|:---------|:-------|:-------------|:-----|
|(Intercept) |27.491 |0.181 |< 0.001 |0.004 |33 |
|sex Female |-0.731 |0.290 |0.012 | | |
|(Intercept) |26.424 |0.752 |< 0.001 |0.000 |33 |
|Age in Years |0.013 |0.012 |0.290 | | |
In order for the report to look nice within an R markdown (knitr) report, you just need to specify results="asis"
when creating the r chunk. This changes the layout slightly (compresses it) and bolds the variable names.
> summary(tab1)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 | ||
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age in Years | 0.013 | 0.012 | 0.290 |
If you want a data.frame version, simply use as.data.frame
.
> as.data.frame(tab1)
y.term y.label strata.term adjustment model term1 bmi Body Mass Index (kg/m^2) unadjusted 1 (Intercept)
2 bmi Body Mass Index (kg/m^2) unadjusted 1 sexFemale
3 bmi Body Mass Index (kg/m^2) unadjusted 2 (Intercept)
4 bmi Body Mass Index (kg/m^2) unadjusted 2 age
label term.type estimate std.error p.value adj.r.squared1 (Intercept) Intercept 27.49147713 0.18134740 0.000000e+00 3.632258e-03
2 sex Female Term -0.73105055 0.29032223 1.190605e-02 3.632258e-03
3 (Intercept) Intercept 26.42372272 0.75211474 1.279109e-196 8.354809e-05
4 Age in Years Term 0.01304859 0.01231653 2.895753e-01 8.354809e-05
Nmiss1 33
2 33
3 33
4 33
The argument adjust
allows the user to indicate that all the variables should be adjusted for these terms. To adjust each model for age and sex (for instance), we use adjust = ~ age + sex
:
> tab2 <- modelsum(alk.phos ~ arm + ps + hgb, adjust= ~age + sex, data=mockstudy)
> summary(tab2)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 175.548 | 20.587 | < 0.001 | -0.001 | 266 |
Treatment Arm F: FOLFOX | -13.701 | 8.730 | 0.117 | ||
Treatment Arm G: IROX | -2.245 | 9.860 | 0.820 | ||
Age in Years | -0.017 | 0.319 | 0.956 | ||
sex Female | 3.016 | 7.521 | 0.688 | ||
(Intercept) | 148.391 | 19.585 | < 0.001 | 0.045 | 266 |
ps | 46.721 | 5.987 | < 0.001 | ||
Age in Years | -0.084 | 0.311 | 0.787 | ||
sex Female | 1.169 | 7.343 | 0.874 | ||
(Intercept) | 336.554 | 32.239 | < 0.001 | 0.031 | 266 |
hgb | -13.845 | 2.137 | < 0.001 | ||
Age in Years | 0.095 | 0.314 | 0.763 | ||
sex Female | -5.980 | 7.516 | 0.426 |
To make sure the correct model is run you need to specify “family”. The options available right now are : gaussian, binomial, survival, and poisson. If there is enough interest, additional models can be added.
Look at whether there is any evidence that AlkPhos values vary by study arm after adjusting for sex and age (assuming a linear age relationship).
> fit <- lm(alk.phos ~ arm + age + sex, data=mockstudy)
> summary(fit)
:
Calllm(formula = alk.phos ~ arm + age + sex, data = mockstudy)
:
Residuals
Min 1Q Median 3Q Max -168.80 -81.45 -47.17 37.39 853.56
:
CoefficientsPr(>|t|)
Estimate Std. Error t value 175.54808 20.58665 8.527 <2e-16 ***
(Intercept) : FOLFOX -13.70062 8.72963 -1.569 0.117
armF: IROX -2.24498 9.86004 -0.228 0.820
armG-0.01741 0.31878 -0.055 0.956
age 3.01598 7.52097 0.401 0.688
sexFemale ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
: 128.5 on 1228 degrees of freedom
Residual standard error266 observations deleted due to missingness)
(-squared: 0.002552, Adjusted R-squared: -0.0006969
Multiple R-statistic: 0.7855 on 4 and 1228 DF, p-value: 0.5346
F> plot(fit)
The results suggest that the endpoint may need to be transformed. Calculating the Box-Cox transformation suggests a log transformation.
> require(MASS)
> boxcox(fit)
> fit2 <- lm(log(alk.phos) ~ arm + age + sex, data=mockstudy)
> summary(fit2)
:
Calllm(formula = log(alk.phos) ~ arm + age + sex, data = mockstudy)
:
Residuals
Min 1Q Median 3Q Max -3.0098 -0.4470 -0.1065 0.4205 2.0620
:
CoefficientsPr(>|t|)
Estimate Std. Error t value 4.9692474 0.1025239 48.469 <2e-16 ***
(Intercept) : FOLFOX -0.0766798 0.0434746 -1.764 0.078 .
armF: IROX -0.0192828 0.0491041 -0.393 0.695
armG-0.0004058 0.0015876 -0.256 0.798
age 0.0179253 0.0374553 0.479 0.632
sexFemale ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
: 0.6401 on 1228 degrees of freedom
Residual standard error266 observations deleted due to missingness)
(-squared: 0.003121, Adjusted R-squared: -0.0001258
Multiple R-statistic: 0.9613 on 4 and 1228 DF, p-value: 0.4278
F> plot(fit2)
Finally, look to see whether there there is a non-linear relationship with age.
> require(splines)
: splines
Loading required package> fit3 <- lm(log(alk.phos) ~ arm + ns(age, df=2) + sex, data=mockstudy)
>
> # test whether there is a difference between models
> stats::anova(fit2,fit3)
Analysis of Variance Table
1: log(alk.phos) ~ arm + age + sex
Model 2: log(alk.phos) ~ arm + ns(age, df = 2) + sex
Model Pr(>F)
Res.Df RSS Df Sum of Sq F 1 1228 503.19
2 1227 502.07 1 1.1137 2.7218 0.09924 .
---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes>
> # look at functional form of age
> termplot(fit3, term=2, se=T, rug=T)
In this instance it looks like there isn’t enough evidence to say that the relationship is non-linear.
broom
packageThe broom
package makes it easy to extract information from the fit.
> tmp <- tidy(fit3) # coefficients, p-values
> class(tmp)
1] "tbl_df" "tbl" "data.frame"
[> tmp
# A tibble: 6 x 5
term estimate std.error statistic p.value<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 4.76 0.141 33.8 1.93e-177
2 armF: FOLFOX -0.0767 0.0434 -1.77 7.78e- 2
3 armG: IROX -0.0195 0.0491 -0.396 6.92e- 1
4 ns(age, df = 2)1 0.330 0.260 1.27 2.04e- 1
5 ns(age, df = 2)2 -0.101 0.0935 -1.08 2.82e- 1
6 sexFemale 0.0183 0.0374 0.489 6.25e- 1
>
> glance(fit3)
# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00533 0.00127 0.640 1.31 0.255 5 -1196. 2405. 2441.
# … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
> ms.logy <- modelsum(log(alk.phos) ~ arm + ps + hgb, data=mockstudy, adjust= ~age + sex,
+ family=gaussian,
+ gaussian.stats=c("estimate","CI.lower.estimate","CI.upper.estimate","p.value"))
> summary(ms.logy)
estimate | CI.lower.estimate | CI.upper.estimate | p.value | |
---|---|---|---|---|
(Intercept) | 4.969 | 4.768 | 5.170 | < 0.001 |
Treatment Arm F: FOLFOX | -0.077 | -0.162 | 0.009 | 0.078 |
Treatment Arm G: IROX | -0.019 | -0.116 | 0.077 | 0.695 |
Age in Years | -0.000 | -0.004 | 0.003 | 0.798 |
sex Female | 0.018 | -0.056 | 0.091 | 0.632 |
(Intercept) | 4.832 | 4.640 | 5.023 | < 0.001 |
ps | 0.226 | 0.167 | 0.284 | < 0.001 |
Age in Years | -0.001 | -0.004 | 0.002 | 0.636 |
sex Female | 0.009 | -0.063 | 0.081 | 0.814 |
(Intercept) | 5.765 | 5.450 | 6.080 | < 0.001 |
hgb | -0.069 | -0.090 | -0.048 | < 0.001 |
Age in Years | 0.000 | -0.003 | 0.003 | 0.925 |
sex Female | -0.027 | -0.101 | 0.046 | 0.468 |
> boxplot(age ~ mdquality.s, data=mockstudy, ylab=attr(mockstudy$age,'label'), xlab='mdquality.s')
>
> fit <- glm(mdquality.s ~ age + sex, data=mockstudy, family=binomial)
> summary(fit)
:
Callglm(formula = mdquality.s ~ age + sex, family = binomial, data = mockstudy)
:
Deviance Residuals
Min 1Q Median 3Q Max -2.1832 0.4500 0.4569 0.4626 0.4756
:
CoefficientsPr(>|z|)
Estimate Std. Error z value 2.329442 0.514684 4.526 6.01e-06 ***
(Intercept) -0.002353 0.008256 -0.285 0.776
age 0.039227 0.195330 0.201 0.841
sexFemale ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
for binomial family taken to be 1)
(Dispersion parameter
: 807.68 on 1246 degrees of freedom
Null deviance: 807.55 on 1244 degrees of freedom
Residual deviance252 observations deleted due to missingness)
(: 813.55
AIC
: 4
Number of Fisher Scoring iterations>
> # create Odd's ratio w/ confidence intervals
> tmp <- data.frame(summary(fit)$coef)
> tmp
Estimate Std..Error z.value Pr...z..2.329441734 0.514683688 4.5259677 6.011977e-06
(Intercept) -0.002353404 0.008255814 -0.2850602 7.755980e-01
age 0.039227292 0.195330166 0.2008256 8.408350e-01
sexFemale >
> tmp$OR <- round(exp(tmp[,1]),2)
> tmp$lower.CI <- round(exp(tmp[,1] - 1.96* tmp[,2]),2)
> tmp$upper.CI <- round(exp(tmp[,1] + 1.96* tmp[,2]),2)
> names(tmp)[4] <- 'P-value'
>
> kable(tmp[,c('OR','lower.CI','upper.CI','P-value')])
OR | lower.CI | upper.CI | P-value | |
---|---|---|---|---|
(Intercept) | 10.27 | 3.75 | 28.17 | 0.000006 |
age | 1.00 | 0.98 | 1.01 | 0.775598 |
sexFemale | 1.04 | 0.71 | 1.53 | 0.840835 |
>
> # Assess the predictive ability of the model
>
> # code using the pROC package
> require(pROC)
> pred <- predict(fit, type='response')
> tmp <- pROC::roc(mockstudy$mdquality.s[!is.na(mockstudy$mdquality.s)]~ pred, plot=TRUE, percent=TRUE)
: control = 0, case = 1
Setting levels: controls < cases Setting direction
> tmp$auc
: 50.69% Area under the curve
broom
packageThe broom
package makes it easy to extract information from the fit.
> tidy(fit, exp=T, conf.int=T) # coefficients, p-values, conf.intervals
# A tibble: 3 x 7
term estimate std.error statistic p.value conf.low conf.high<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 10.3 0.515 4.53 0.00000601 3.83 28.9
2 age 0.998 0.00826 -0.285 0.776 0.981 1.01
3 sexFemale 1.04 0.195 0.201 0.841 0.712 1.53
>
> glance(fit) # model summary statistics
# A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 808. 1246 -404. 814. 829. 808. 1244 1247
> summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial))
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 10.272 | 3.831 | 28.876 | < 0.001 | 0.507 | 252 |
Age in Years | 0.998 | 0.981 | 1.014 | 0.776 | ||
sex Female | 1.040 | 0.712 | 1.534 | 0.841 | ||
(Intercept) | 4.814 | 1.709 | 13.221 | 0.003 | 0.550 | 273 |
Body Mass Index (kg/m^2) | 1.023 | 0.987 | 1.063 | 0.220 | ||
sex Female | 1.053 | 0.717 | 1.561 | 0.794 |
>
> fitall <- modelsum(mdquality.s ~ age, data=mockstudy, family=binomial,
+ binomial.stats=c("Nmiss2","OR","p.value"))
> summary(fitall)
OR | p.value | Nmiss2 | |
---|---|---|---|
(Intercept) | 10.493 | < 0.001 | 252 |
Age in Years | 0.998 | 0.766 |
> require(survival)
: survival
Loading required package>
> # multivariable model with all 3 terms
> fit <- coxph(Surv(fu.time, fu.stat) ~ age + sex + arm, data=mockstudy)
> summary(fit)
:
Callcoxph(formula = Surv(fu.time, fu.stat) ~ age + sex + arm, data = mockstudy)
= 1499, number of events= 1356
n
exp(coef) se(coef) z Pr(>|z|)
coef 0.004600 1.004611 0.002501 1.839 0.0659 .
age 0.039893 1.040699 0.056039 0.712 0.4765
sexFemale : FOLFOX -0.454650 0.634670 0.064878 -7.008 2.42e-12 ***
armF: IROX -0.140785 0.868676 0.072760 -1.935 0.0530 .
armG---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
exp(coef) exp(-coef) lower .95 upper .95
1.0046 0.9954 0.9997 1.0095
age 1.0407 0.9609 0.9324 1.1615
sexFemale : FOLFOX 0.6347 1.5756 0.5589 0.7207
armF: IROX 0.8687 1.1512 0.7532 1.0018
armG
= 0.563 (se = 0.009 )
Concordance= 56.21 on 4 df, p=2e-11
Likelihood ratio test= 56.26 on 4 df, p=2e-11
Wald test Score (logrank) test = 56.96 on 4 df, p=1e-11
>
> # check proportional hazards assumption
> fit.z <- cox.zph(fit)
> fit.z
chisq df p1.41 1 0.24
age 1.08 1 0.30
sex 1.80 2 0.41
arm 4.68 4 0.32
GLOBAL > plot(fit.z[1], resid=FALSE) # makes for a cleaner picture in this case
> abline(h=coef(fit)[1], col='red')
>
> # check functional form for age using pspline (penalized spline)
> # results are returned for the linear and non-linear components
> fit2 <- coxph(Surv(fu.time, fu.stat) ~ pspline(age) + sex + arm, data=mockstudy)
> fit2
:
Callcoxph(formula = Surv(fu.time, fu.stat) ~ pspline(age) + sex +
data = mockstudy)
arm,
se(coef) se2 Chisq DF p
coef pspline(age), linear 0.00443 0.00237 0.00237 3.48989 1.00 0.0617
pspline(age), nonlin 13.11270 3.08 0.0047
0.03993 0.05610 0.05607 0.50663 1.00 0.4766
sexFemale : FOLFOX -0.46240 0.06494 0.06493 50.69608 1.00 1.1e-12
armF: IROX -0.15243 0.07301 0.07299 4.35876 1.00 0.0368
armG
: 6 outer, 16 Newton-Raphson
Iterations= 0.954
Thetafor terms= 4.1 1.0 2.0
Degrees of freedom =70.1 on 7.08 df, p=2e-12
Likelihood ratio test= 1499, number of events= 1356
n>
> # plot smoothed age to visualize why significant
> termplot(fit2, se=T, terms=1)
> abline(h=0)
>
> # The c-statistic comes out in the summary of the fit
> summary(fit2)$concordance
se(C)
C 0.568432549 0.008487495
>
> # It can also be calculated using the survConcordance function
> survConcordance(Surv(fu.time, fu.stat) ~ predict(fit2), data=mockstudy)
: 'survConcordance' is deprecated.
Warning'concordance' instead.
Use help("Deprecated")
See : 'survConcordance.fit' is deprecated.
Warning'concordancefit' instead.
Use help("Deprecated")
See $concordance
concordant 0.5684325
$stats
std(c-d)
concordant discordant tied.risk tied.time 620221.00 470282.00 5021.00 766.00 19235.49
$n
1] 1499
[
$std.err
std(c-d)
0.008779125
$call
survConcordance(formula = Surv(fu.time, fu.stat) ~ predict(fit2),
data = mockstudy)
attr(,"class")
1] "survConcordance" [
broom
packageThe broom
package makes it easy to extract information from the fit.
> tidy(fit) # coefficients, p-values
# A tibble: 4 x 5
term estimate std.error statistic p.value<chr> <dbl> <dbl> <dbl> <dbl>
1 age 0.00460 0.00250 1.84 6.59e- 2
2 sexFemale 0.0399 0.0560 0.712 4.77e- 1
3 armF: FOLFOX -0.455 0.0649 -7.01 2.42e-12
4 armG: IROX -0.141 0.0728 -1.93 5.30e- 2
>
> glance(fit) # model summary statistics
# A tibble: 1 x 18
n nevent statistic.log p.value.log statistic.sc p.value.sc statistic.wald<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1499 1356 56.2 1.81e-11 57.0 1.26e-11 56.3
# … with 11 more variables: p.value.wald <dbl>, statistic.robust <dbl>,
# p.value.robust <dbl>, r.squared <dbl>, r.squared.max <dbl>,
# concordance <dbl>, std.error.concordance <dbl>, logLik <dbl>, AIC <dbl>,
# BIC <dbl>, nobs <int>
> ##Note: You must use quotes when specifying family="survival"
> ## family=survival will not work
> summary(modelsum(Surv(fu.time, fu.stat) ~ arm,
+ adjust=~age + sex, data=mockstudy, family="survival"))
HR | CI.lower.HR | CI.upper.HR | p.value | concordance | |
---|---|---|---|---|---|
Treatment Arm F: FOLFOX | 0.635 | 0.559 | 0.721 | < 0.001 | 0.563 |
Treatment Arm G: IROX | 0.869 | 0.753 | 1.002 | 0.053 | |
Age in Years | 1.005 | 1.000 | 1.010 | 0.066 | |
sex Female | 1.041 | 0.932 | 1.162 | 0.477 |
>
> ##Note: the pspline term is not working yet
> #summary(modelsum(Surv(fu.time, fu.stat) ~ arm,
> # adjust=~pspline(age) + sex, data=mockstudy, family='survival'))
Poisson regression is useful when predicting an outcome variable representing counts. It can also be useful when looking at survival data. Cox models and Poisson models are very closely related and survival data can be summarized using Poisson regression. If you have overdispersion (see if the residual deviance is much larger than degrees of freedom), you may want to use quasipoisson()
instead of poisson()
. Some of these diagnostics need to be done outside of modelsum
.
For the first example, use the solder dataset available in the rpart
package. The endpoint skips
has a definite Poisson look.
> require(rpart) ##just to get access to solder dataset
> data(solder)
> hist(solder$skips)
>
> fit <- glm(skips ~ Opening + Solder + Mask , data=solder, family=poisson)
> stats::anova(fit, test='Chi')
Analysis of Deviance Table
: poisson, link: log
Model
: skips
Response
sequentially (first to last)
Terms added
Pr(>Chi)
Df Deviance Resid. Df Resid. Dev NULL 899 8788.2
2 2920.5 897 5867.7 < 2.2e-16 ***
Opening 1 1168.4 896 4699.3 < 2.2e-16 ***
Solder 4 2015.7 892 2683.7 < 2.2e-16 ***
Mask ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes> summary(fit)
:
Callglm(formula = skips ~ Opening + Solder + Mask, family = poisson,
data = solder)
:
Deviance Residuals
Min 1Q Median 3Q Max -6.1251 -1.4720 -0.7826 0.5986 6.6031
:
CoefficientsPr(>|z|)
Estimate Std. Error z value -1.12220 0.07742 -14.50 < 2e-16 ***
(Intercept) 0.57161 0.05707 10.02 < 2e-16 ***
OpeningM 1.81475 0.05044 35.98 < 2e-16 ***
OpeningS 0.84682 0.03327 25.45 < 2e-16 ***
SolderThin 0.51315 0.07098 7.23 4.83e-13 ***
MaskA3 1.81103 0.06609 27.40 < 2e-16 ***
MaskA6 1.20225 0.06697 17.95 < 2e-16 ***
MaskB3 1.86648 0.06310 29.58 < 2e-16 ***
MaskB6 ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
for poisson family taken to be 1)
(Dispersion parameter
: 8788.2 on 899 degrees of freedom
Null deviance: 2683.7 on 892 degrees of freedom
Residual deviance: 4802.2
AIC
: 5 Number of Fisher Scoring iterations
Overdispersion is when the Residual deviance is larger than the degrees of freedom. This can be tested, approximately using the following code. The goal is to have a p-value that is \(>0.05\).
> 1-pchisq(fit$deviance, fit$df.residual)
1] 0 [
One possible solution is to use the quasipoisson family instead of the poisson family. This adjusts for the overdispersion.
> fit2 <- glm(skips ~ Opening + Solder + Mask, data=solder, family=quasipoisson)
> summary(fit2)
:
Callglm(formula = skips ~ Opening + Solder + Mask, family = quasipoisson,
data = solder)
:
Deviance Residuals
Min 1Q Median 3Q Max -6.1251 -1.4720 -0.7826 0.5986 6.6031
:
CoefficientsPr(>|t|)
Estimate Std. Error t value -1.12220 0.13483 -8.323 3.19e-16 ***
(Intercept) 0.57161 0.09939 5.751 1.22e-08 ***
OpeningM 1.81475 0.08784 20.660 < 2e-16 ***
OpeningS 0.84682 0.05794 14.615 < 2e-16 ***
SolderThin 0.51315 0.12361 4.151 3.62e-05 ***
MaskA3 1.81103 0.11510 15.735 < 2e-16 ***
MaskA6 1.20225 0.11663 10.308 < 2e-16 ***
MaskB3 1.86648 0.10989 16.984 < 2e-16 ***
MaskB6 ---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
for quasipoisson family taken to be 3.033198)
(Dispersion parameter
: 8788.2 on 899 degrees of freedom
Null deviance: 2683.7 on 892 degrees of freedom
Residual deviance: NA
AIC
: 5 Number of Fisher Scoring iterations
broom
packageThe broom
package makes it easy to extract information from the fit.
> tidy(fit) # coefficients, p-values
# A tibble: 8 x 5
term estimate std.error statistic p.value<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1.12 0.0774 -14.5 1.29e- 47
2 OpeningM 0.572 0.0571 10.0 1.29e- 23
3 OpeningS 1.81 0.0504 36.0 1.66e-283
4 SolderThin 0.847 0.0333 25.5 6.47e-143
5 MaskA3 0.513 0.0710 7.23 4.83e- 13
6 MaskA6 1.81 0.0661 27.4 2.45e-165
7 MaskB3 1.20 0.0670 18.0 4.55e- 72
8 MaskB6 1.87 0.0631 29.6 2.71e-192
>
> glance(fit) # model summary statistics
# A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 8788. 899 -2393. 4802. 4841. 2684. 892 900
> summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="quasipoisson"))
RR | CI.lower.RR | CI.upper.RR | p.value | |
---|---|---|---|---|
(Intercept) | 1.533 | 1.179 | 1.952 | < 0.001 |
Opening M | 2.328 | 1.733 | 3.167 | < 0.001 |
Opening S | 7.491 | 5.780 | 9.888 | < 0.001 |
(Intercept) | 2.904 | 2.423 | 3.446 | < 0.001 |
Solder Thin | 2.808 | 2.295 | 3.458 | < 0.001 |
(Intercept) | 1.611 | 1.135 | 2.204 | 0.005 |
Mask A3 | 1.469 | 0.995 | 2.214 | 0.059 |
Mask A6 | 8.331 | 5.839 | 12.222 | < 0.001 |
Mask B3 | 3.328 | 2.309 | 4.920 | < 0.001 |
Mask B6 | 6.466 | 4.598 | 9.378 | < 0.001 |
> summary(modelsum(skips~Opening + Solder + Mask, data=solder, family="poisson"))
RR | CI.lower.RR | CI.upper.RR | p.value | |
---|---|---|---|---|
(Intercept) | 1.533 | 1.397 | 1.678 | < 0.001 |
Opening M | 2.328 | 2.089 | 2.599 | < 0.001 |
Opening S | 7.491 | 6.805 | 8.267 | < 0.001 |
(Intercept) | 2.904 | 2.750 | 3.065 | < 0.001 |
Solder Thin | 2.808 | 2.637 | 2.992 | < 0.001 |
(Intercept) | 1.611 | 1.433 | 1.804 | < 0.001 |
Mask A3 | 1.469 | 1.280 | 1.690 | < 0.001 |
Mask A6 | 8.331 | 7.341 | 9.487 | < 0.001 |
Mask B3 | 3.328 | 2.923 | 3.800 | < 0.001 |
Mask B6 | 6.466 | 5.724 | 7.331 | < 0.001 |
This second example uses the survival endpoint available in the mockstudy
dataset. There is a close relationship between survival and Poisson models, and often it is easier to fit the model using Poisson regression, especially if you want to present absolute risk.
> # add .01 to the follow-up time (.01*1 day) in order to keep everyone in the analysis
> fit <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm, data=mockstudy, family=poisson)
> summary(fit)
:
Callglm(formula = fu.stat ~ offset(log(fu.time + 0.01)) + age + sex +
family = poisson, data = mockstudy)
arm,
:
Deviance Residuals
Min 1Q Median 3Q Max -3.1188 -0.4041 0.3242 0.9727 4.3588
:
CoefficientsPr(>|z|)
Estimate Std. Error z value -5.875627 0.108984 -53.913 < 2e-16 ***
(Intercept) 0.003724 0.001705 2.184 0.0290 *
age 0.027321 0.038575 0.708 0.4788
sexFemale : FOLFOX -0.335141 0.044600 -7.514 5.72e-14 ***
armF: IROX -0.107776 0.050643 -2.128 0.0333 *
armG---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
for poisson family taken to be 1)
(Dispersion parameter
: 2113.5 on 1498 degrees of freedom
Null deviance: 2048.0 on 1494 degrees of freedom
Residual deviance: 5888.2
AIC
: 5
Number of Fisher Scoring iterations> 1-pchisq(fit$deviance, fit$df.residual)
1] 0
[>
> coef(coxph(Surv(fu.time,fu.stat) ~ age + sex + arm, data=mockstudy))
: FOLFOX armG: IROX
age sexFemale armF0.004600011 0.039892735 -0.454650445 -0.140784996
> coef(fit)[-1]
: FOLFOX armG: IROX
age sexFemale armF0.003723763 0.027320917 -0.335141090 -0.107775577
>
> # results from the Poisson model can then be described as risk ratios (similar to the hazard ratio)
> exp(coef(fit)[-1])
: FOLFOX armG: IROX
age sexFemale armF1.0037307 1.0276976 0.7152372 0.8978291
>
> # As before, we can model the dispersion which alters the standard error
> fit2 <- glm(fu.stat ~ offset(log(fu.time+.01)) + age + sex + arm,
+ data=mockstudy, family=quasipoisson)
> summary(fit2)
:
Callglm(formula = fu.stat ~ offset(log(fu.time + 0.01)) + age + sex +
family = quasipoisson, data = mockstudy)
arm,
:
Deviance Residuals
Min 1Q Median 3Q Max -3.1188 -0.4041 0.3242 0.9727 4.3588
:
CoefficientsPr(>|t|)
Estimate Std. Error t value -5.875627 0.566666 -10.369 <2e-16 ***
(Intercept) 0.003724 0.008867 0.420 0.675
age 0.027321 0.200572 0.136 0.892
sexFemale : FOLFOX -0.335141 0.231899 -1.445 0.149
armF: IROX -0.107776 0.263318 -0.409 0.682
armG---
: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes
for quasipoisson family taken to be 27.03493)
(Dispersion parameter
: 2113.5 on 1498 degrees of freedom
Null deviance: 2048.0 on 1494 degrees of freedom
Residual deviance: NA
AIC
: 5 Number of Fisher Scoring iterations
broom
packageThe broom
package makes it easy to extract information from the fit.
> tidy(fit) ##coefficients, p-values
# A tibble: 5 x 5
term estimate std.error statistic p.value<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -5.88 0.109 -53.9 0.
2 age 0.00372 0.00171 2.18 2.90e- 2
3 sexFemale 0.0273 0.0386 0.708 4.79e- 1
4 armF: FOLFOX -0.335 0.0446 -7.51 5.72e-14
5 armG: IROX -0.108 0.0506 -2.13 3.33e- 2
>
> glance(fit) ##model summary statistics
# A tibble: 1 x 8
null.deviance df.null logLik AIC BIC deviance df.residual nobs<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <int>
1 2114. 1498 -2939. 5888. 5915. 2048. 1494 1499
modelsum
Remember that the result from modelsum
is different from the fit
above. The modelsum
summary shows the results for age + offset(log(fu.time+.01))
then sex + offset(log(fu.time+.01))
instead of age + sex + arm + offset(log(fu.time+.01))
.
> summary(modelsum(fu.stat ~ age, adjust=~offset(log(fu.time+.01))+ sex + arm,
+ data=mockstudy, family=poisson))
RR | CI.lower.RR | CI.upper.RR | p.value | |
---|---|---|---|---|
(Intercept) | 0.003 | 0.002 | 0.003 | < 0.001 |
Age in Years | 1.004 | 1.000 | 1.007 | 0.029 |
sex Female | 1.028 | 0.953 | 1.108 | 0.479 |
Treatment Arm F: FOLFOX | 0.715 | 0.656 | 0.781 | < 0.001 |
Treatment Arm G: IROX | 0.898 | 0.813 | 0.991 | 0.033 |
Here are multiple examples showing how to use some of the different options.
There are standard settings for each type of model regarding what information is summarized in the table. This behavior can be modified using the modelsum.control function. In fact, you can save your standard settings and use that for future tables.
> mycontrols <- modelsum.control(gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"),
+ show.adjust=FALSE, show.intercept=FALSE)
> tab2 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy, control=mycontrols)
> summary(tab2)
estimate | std.error | adj.r.squared | Nmiss | |
---|---|---|---|---|
Age in Years | 0.012 | 0.012 | 0.004 | 33 |
You can also change these settings directly in the modelsum call.
> tab3 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy,
+ gaussian.stats=c("estimate","std.error","adj.r.squared","Nmiss"),
+ show.intercept=FALSE, show.adjust=FALSE)
> summary(tab3)
estimate | std.error | adj.r.squared | Nmiss | |
---|---|---|---|---|
Age in Years | 0.012 | 0.012 | 0.004 | 33 |
In the above example, age is shown with a label (Age in Years), but sex is listed “as is”. This is because the data was created in SAS and in the SAS dataset, age had a label but sex did not. The label is stored as an attribute within R.
> ## Look at one variable's label
> attr(mockstudy$age,'label')
1] "Age in Years"
[>
> ## See all the variables with a label
> unlist(lapply(mockstudy,'attr','label'))
age arm "Age in Years" "Treatment Arm"
race bmi "Race" "Body Mass Index (kg/m^2)"
>
> ## or
> cbind(sapply(mockstudy,attr,'label'))
1]
[,NULL
case "Age in Years"
age "Treatment Arm"
arm NULL
sex "Race"
race NULL
fu.time NULL
fu.stat NULL
ps NULL
hgb "Body Mass Index (kg/m^2)"
bmi NULL
alk.phos NULL
ast NULL
mdquality.s NULL age.ord
If you want to add labels to other variables, there are a couple of options. First, you could add labels to the variables in your dataset.
> attr(mockstudy$age,'label') <- 'Age, yrs'
>
> tab1 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy)
> summary(tab1)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.793 | 0.766 | < 0.001 | 0.004 | 33 |
Age, yrs | 0.012 | 0.012 | 0.348 | ||
sex Female | -0.718 | 0.291 | 0.014 |
You can also use the built-in data.frame
method for labels<-
:
> labels(mockstudy) <- c(age = 'Age, yrs')
>
> tab1 <- modelsum(bmi ~ age, adjust=~sex, data=mockstudy)
> summary(tab1)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.793 | 0.766 | < 0.001 | 0.004 | 33 |
Age, yrs | 0.012 | 0.012 | 0.348 | ||
sex Female | -0.718 | 0.291 | 0.014 |
Another option is to add labels after you have created the table
> mylabels <- list(sexFemale = "Female", age ="Age, yrs")
> summary(tab1, labelTranslations = mylabels)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.793 | 0.766 | < 0.001 | 0.004 | 33 |
Age, yrs | 0.012 | 0.012 | 0.348 | ||
Female | -0.718 | 0.291 | 0.014 |
Alternatively, you can check the variable labels and manipulate them with a function called labels
, which works on the modelsum
object.
> labels(tab1)
bmi age "Body Mass Index (kg/m^2)" "Age, yrs"
sex "sex Female"
> labels(tab1) <- c(sexFemale="Female", age="Baseline Age (yrs)")
> labels(tab1)
bmi age "Body Mass Index (kg/m^2)" "Baseline Age (yrs)"
sex "Female"
> summary(tab1)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.793 | 0.766 | < 0.001 | 0.004 | 33 |
Baseline Age (yrs) | 0.012 | 0.012 | 0.348 | ||
Female | -0.718 | 0.291 | 0.014 |
> summary(modelsum(age~mdquality.s+sex, data=mockstudy), show.intercept=FALSE)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
mdquality.s | -0.326 | 1.093 | 0.766 | -0.001 | 252 |
sex Female | -1.208 | 0.610 | 0.048 | 0.002 | 0 |
> summary(modelsum(mdquality.s ~ age + bmi, data=mockstudy, adjust=~sex, family=binomial),
+ show.adjust=FALSE)
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 10.272 | 3.831 | 28.876 | < 0.001 | 0.507 | 252 |
Age, yrs | 0.998 | 0.981 | 1.014 | 0.776 | ||
(Intercept) | 4.814 | 1.709 | 13.221 | 0.003 | 0.550 | 273 |
Body Mass Index (kg/m^2) | 1.023 | 0.987 | 1.063 | 0.220 |
Often one wants to summarize a number of variables. Instead of typing by hand each individual variable, an alternative approach is to create a formula using the paste
command with the collapse="+"
option.
> # create a vector specifying the variable names
> myvars <- names(mockstudy)
>
> # select the 8th through the 12th
> # paste them together, separated by the + sign
> RHS <- paste(myvars[8:12], collapse="+")
> RHS
[1] “ps+hgb+bmi+alk.phos+ast”
>
> # create a formula using the as.formula function
> as.formula(paste('mdquality.s ~ ', RHS))
mdquality.s ~ ps + hgb + bmi + alk.phos + ast
>
> # use the formula in the modelsum function
> summary(modelsum(as.formula(paste('mdquality.s ~', RHS)), family=binomial, data=mockstudy))
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 14.628 | 10.755 | 20.399 | < 0.001 | 0.620 | 460 |
ps | 0.461 | 0.332 | 0.639 | < 0.001 | ||
(Intercept) | 1.236 | 0.272 | 5.560 | 0.783 | 0.573 | 460 |
hgb | 1.176 | 1.040 | 1.334 | 0.011 | ||
(Intercept) | 4.963 | 1.818 | 13.292 | 0.002 | 0.549 | 273 |
Body Mass Index (kg/m^2) | 1.023 | 0.987 | 1.062 | 0.225 | ||
(Intercept) | 10.622 | 7.687 | 14.794 | < 0.001 | 0.552 | 460 |
alk.phos | 0.999 | 0.998 | 1.000 | 0.159 | ||
(Intercept) | 10.936 | 7.912 | 15.232 | < 0.001 | 0.545 | 460 |
ast | 0.995 | 0.988 | 1.001 | 0.099 |
These steps can also be done using the formulize
function.
> ## The formulize function does the paste and as.formula steps
> tmp <- formulize('mdquality.s',myvars[8:10])
> tmp
mdquality.s ~ ps + hgb + bmi
>
> ## More complex formulas could also be written using formulize
> tmp2 <- formulize('mdquality.s',c('ps','hgb','sqrt(bmi)'))
>
> ## use the formula in the modelsum function
> summary(modelsum(tmp, data=mockstudy, family=binomial))
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 14.628 | 10.755 | 20.399 | < 0.001 | 0.620 | 460 |
ps | 0.461 | 0.332 | 0.639 | < 0.001 | ||
(Intercept) | 1.236 | 0.272 | 5.560 | 0.783 | 0.573 | 460 |
hgb | 1.176 | 1.040 | 1.334 | 0.011 | ||
(Intercept) | 4.963 | 1.818 | 13.292 | 0.002 | 0.549 | 273 |
Body Mass Index (kg/m^2) | 1.023 | 0.987 | 1.062 | 0.225 |
Here are two ways to get the same result (limit the analysis to subjects age>50 and in the F: FOLFOX treatment group).
mockstudy
. This example also selects a subset of variables. The modelsum
function is then applied to this subsetted data.> newdata <- subset(mockstudy, subset=age>50 & arm=='F: FOLFOX', select = c(age,sex, bmi:alk.phos))
> dim(mockstudy)
1] 1499 14
[> table(mockstudy$arm)
: IFL F: FOLFOX G: IROX
A428 691 380
> dim(newdata)
1] 557 4
[> names(newdata)
1] "age" "sex" "bmi" "alk.phos" [
> summary(modelsum(alk.phos ~ ., data=newdata))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 122.577 | 46.924 | 0.009 | -0.001 | 108 |
age | 0.619 | 0.719 | 0.390 | ||
(Intercept) | 164.814 | 7.673 | < 0.001 | -0.002 | 108 |
sex Female | -5.497 | 12.118 | 0.650 | ||
(Intercept) | 238.658 | 33.705 | < 0.001 | 0.010 | 119 |
bmi | -2.776 | 1.207 | 0.022 |
modelsum
to subset the data.> summary(modelsum(log(alk.phos) ~ sex + ps + bmi, subset=age>50 & arm=="F: FOLFOX", data=mockstudy))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 4.872 | 0.039 | < 0.001 | -0.002 | 108 |
sex Female | -0.005 | 0.062 | 0.931 | ||
(Intercept) | 4.770 | 0.040 | < 0.001 | 0.027 | 108 |
ps | 0.183 | 0.050 | < 0.001 | ||
(Intercept) | 5.207 | 0.172 | < 0.001 | 0.007 | 119 |
Body Mass Index (kg/m^2) | -0.012 | 0.006 | 0.044 |
> summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset = age>50 & bmi<24, data=mockstudy))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 178.812 | 14.550 | < 0.001 | 0.007 | 77 |
ps | 20.834 | 13.440 | 0.122 | ||
sex Female | -17.542 | 16.656 | 0.293 | ||
(Intercept) | 373.008 | 104.272 | < 0.001 | 0.009 | 77 |
Body Mass Index (kg/m^2) | -8.239 | 4.727 | 0.083 | ||
sex Female | -24.058 | 16.855 | 0.155 |
> summary(modelsum(alk.phos ~ ps + bmi, adjust=~sex, subset=1:30, data=mockstudy))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 169.112 | 57.013 | 0.006 | 0.294 | 0 |
ps | 254.901 | 68.100 | < 0.001 | ||
sex Female | 49.566 | 67.643 | 0.470 | ||
(Intercept) | 453.070 | 200.651 | 0.033 | -0.049 | 1 |
Body Mass Index (kg/m^2) | -5.993 | 7.408 | 0.426 | ||
sex Female | -22.308 | 79.776 | 0.782 |
> ## create a variable combining the levels of mdquality.s and sex
> with(mockstudy, table(interaction(mdquality.s,sex)))
0.Male 1.Male 0.Female 1.Female
77 686 47 437
> summary(modelsum(age ~ interaction(mdquality.s,sex), data=mockstudy))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 59.714 | 1.314 | < 0.001 | 0.003 | 252 |
interaction(mdquality.s, sex) 1.Male | 0.730 | 1.385 | 0.598 | ||
interaction(mdquality.s, sex) 0.Female | 0.988 | 2.134 | 0.643 | ||
interaction(mdquality.s, sex) 1.Female | -1.021 | 1.425 | 0.474 |
Certain transformations need to be surrounded by I()
so that R knows to treat it as a variable transformation and not some special model feature. If the transformation includes any of the symbols / - + ^ *
then surround the new variable by I()
.
> summary(modelsum(arm=="F: FOLFOX" ~ I(age/10) + log(bmi) + mdquality.s,
+ data=mockstudy, family=binomial))
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 0.656 | 0.382 | 1.124 | 0.126 | 0.514 | 0 |
Age, yrs | 1.045 | 0.957 | 1.142 | 0.326 | ||
(Intercept) | 0.633 | 0.108 | 3.698 | 0.611 | 0.508 | 33 |
Body Mass Index (kg/m^2) | 1.092 | 0.638 | 1.867 | 0.748 | ||
(Intercept) | 0.722 | 0.503 | 1.029 | 0.074 | 0.502 | 252 |
mdquality.s | 1.045 | 0.719 | 1.527 | 0.819 |
> mytab <- modelsum(bmi ~ sex + alk.phos + age, data=mockstudy)
> mytab2 <- mytab[c('age','sex','alk.phos')]
> summary(mytab2)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age, yrs | 0.013 | 0.012 | 0.290 | ||
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 | ||
(Intercept) | 27.944 | 0.253 | < 0.001 | 0.011 | 294 |
alk.phos | -0.005 | 0.001 | < 0.001 |
> summary(mytab[c('age','sex')])
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age, yrs | 0.013 | 0.012 | 0.290 | ||
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 |
> summary(mytab[c(3,1)])
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age, yrs | 0.013 | 0.012 | 0.290 | ||
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 |
modelsum
objects togetherIt is possible to merge two modelsum objects so that they print out together, however you need to pay attention to the columns that are being displayed. It is sometimes easier to combine two models of the same family (such as two sets of linear models). Overlapping y-variables will have their x-variables concatenated, and (if all=TRUE
) non-overlapping y-variables will have their tables printed separately.
> ## demographics
> tab1 <- modelsum(bmi ~ sex + age, data=mockstudy)
> ## lab data
> tab2 <- modelsum(mdquality.s ~ hgb + alk.phos, data=mockstudy, family=binomial)
>
> tab12 <- merge(tab1, tab2, all = TRUE)
> class(tab12)
[1] “modelsum” “arsenal_table”
> summary(tab12)
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 | ||
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age, yrs | 0.013 | 0.012 | 0.290 |
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 1.236 | 0.272 | 5.560 | 0.783 | 0.573 | 460 |
hgb | 1.176 | 1.040 | 1.334 | 0.011 | ||
(Intercept) | 10.622 | 7.687 | 14.794 | < 0.001 | 0.552 | 460 |
alk.phos | 0.999 | 0.998 | 1.000 | 0.159 |
When creating a pdf the tables are automatically numbered and the title appears below the table. In Word and HTML, the titles appear un-numbered and above the table.
> t1 <- modelsum(bmi ~ sex + age, data=mockstudy)
> summary(t1, title='Demographics')
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 27.491 | 0.181 | < 0.001 | 0.004 | 33 |
sex Female | -0.731 | 0.290 | 0.012 | ||
(Intercept) | 26.424 | 0.752 | < 0.001 | 0.000 | 33 |
Age, yrs | 0.013 | 0.012 | 0.290 |
Depending on the report you are writing you have the following options:
Use all values available for each variable
Use only those subjects who have measurements available for all the variables
> ## look at how many missing values there are for each variable
> apply(is.na(mockstudy),2,sum)
case age arm sex race fu.time 0 0 0 0 7 0
fu.stat ps hgb bmi alk.phos ast 0 266 266 33 266 266
mdquality.s age.ord 252 0
> ## Show how many subjects have each variable (non-missing)
> summary(modelsum(bmi ~ ast + age, data=mockstudy,
+ control=modelsum.control(gaussian.stats=c("N","estimate"))))
estimate | N | |
---|---|---|
(Intercept) | 27.331 | 1205 |
ast | -0.005 | |
(Intercept) | 26.424 | 1466 |
Age, yrs | 0.013 |
>
> ## Always list the number of missing values
> summary(modelsum(bmi ~ ast + age, data=mockstudy,
+ control=modelsum.control(gaussian.stats=c("Nmiss2","estimate"))))
estimate | Nmiss2 | |
---|---|---|
(Intercept) | 27.331 | 294 |
ast | -0.005 | |
(Intercept) | 26.424 | 33 |
Age, yrs | 0.013 |
>
> ## Only show the missing values if there are some (default)
> summary(modelsum(bmi ~ ast + age, data=mockstudy,
+ control=modelsum.control(gaussian.stats=c("Nmiss","estimate"))))
estimate | Nmiss | |
---|---|---|
(Intercept) | 27.331 | 294 |
ast | -0.005 | |
(Intercept) | 26.424 | 33 |
Age, yrs | 0.013 |
>
> ## Don't show N at all
> summary(modelsum(bmi ~ ast + age, data=mockstudy,
+ control=modelsum.control(gaussian.stats=c("estimate"))))
estimate | |
---|---|
(Intercept) | 27.331 |
ast | -0.005 |
(Intercept) | 26.424 |
Age, yrs | 0.013 |
Within modelsum.control function there are 3 options for controlling the number of significant digits shown.
digits: controls the number of digits after the decimal point for continuous values
digits.ratio: controls the number of digits after the decimal point for continuous values
digits.p: controls the number of digits after the decimal point for continuous values
> summary(modelsum(bmi ~ sex + age + fu.time, data=mockstudy), digits=4, digits.test=2)
: Using 'digits.test = ' is deprecated. Use 'digits.p = ' instead. Warning
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 27.4915 | 0.1813 | < 0.001 | 0.0036 | 33 |
sex Female | -0.7311 | 0.2903 | 0.012 | ||
(Intercept) | 26.4237 | 0.7521 | < 0.001 | 0.0001 | 33 |
Age, yrs | 0.0130 | 0.0123 | 0.290 | ||
(Intercept) | 26.4937 | 0.2447 | < 0.001 | 0.0079 | 33 |
fu.time | 0.0011 | 0.0003 | < 0.001 |
Occasionally it is of interest to fit models using case weights. The modelsum
function allows you to pass on the weights to the models and it will do the appropriate fit.
> mockstudy$agegp <- cut(mockstudy$age, breaks=c(18,50,60,70,90), right=FALSE)
>
> ## create weights based on agegp and sex distribution
> tab1 <- with(mockstudy,table(agegp, sex))
> tab1
sex
agegp Male Female18,50) 152 110
[50,60) 258 178
[60,70) 295 173
[70,90) 211 122
[> tab2 <- with(mockstudy, table(agegp, sex, arm))
> gpwts <- rep(tab1, length(unique(mockstudy$arm)))/tab2
>
> ## apply weights to subjects
> index <- with(mockstudy, cbind(as.numeric(agegp), as.numeric(sex), as.numeric(as.factor(arm))))
> mockstudy$wts <- gpwts[index]
>
> ## show weights by treatment arm group
> tapply(mockstudy$wts,mockstudy$arm, summary)
$`A: IFL`
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.923 3.225 3.548 3.502 3.844 4.045
$`F: FOLFOX`
Min. 1st Qu. Median Mean 3rd Qu. Max. 2.033 2.070 2.201 2.169 2.263 2.303
$`G: IROX`
Min. 1st Qu. Median Mean 3rd Qu. Max. 3.667 3.734 4.023 3.945 4.031 4.471
> mockstudy$newvarA <- as.numeric(mockstudy$arm=='A: IFL')
> tab1 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'),
+ family=binomial)
> summary(tab1, title='No Case Weights used')
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 0.590 | 0.473 | 0.735 | < 0.001 | 0.550 | 210 |
ast | 1.003 | 0.998 | 1.008 | 0.258 | ||
(Intercept) | 0.578 | 0.306 | 1.093 | 0.091 | 0.500 | 29 |
Body Mass Index (kg/m^2) | 1.003 | 0.980 | 1.026 | 0.808 | ||
(Intercept) | 1.006 | 0.386 | 2.631 | 0.990 | 0.514 | 210 |
hgb | 0.965 | 0.894 | 1.043 | 0.372 |
>
> suppressWarnings({
+ tab2 <- modelsum(newvarA ~ ast + bmi + hgb, data=mockstudy, subset=(arm !='G: IROX'),
+ weights=wts, family=binomial)
+ summary(tab2, title='Case Weights used')
+ })
OR | CI.lower.OR | CI.upper.OR | p.value | concordance | Nmiss | |
---|---|---|---|---|---|---|
(Intercept) | 0.956 | 0.837 | 1.091 | 0.504 | 0.550 | 210 |
ast | 1.003 | 1.000 | 1.006 | 0.068 | ||
(Intercept) | 0.957 | 0.658 | 1.393 | 0.820 | 0.500 | 29 |
Body Mass Index (kg/m^2) | 1.002 | 0.988 | 1.016 | 0.780 | ||
(Intercept) | 1.829 | 1.031 | 3.248 | 0.039 | 0.514 | 210 |
hgb | 0.956 | 0.913 | 1.001 | 0.058 |
modelsum
within an Sweave documentFor those users who wish to create tables within an Sweave document, the following code seems to work.
\documentclass{article}
\usepackage{longtable}
\usepackage{pdfpages}
\begin{document}
\section{Read in Data}
<<echo=TRUE>>=
require(arsenal)
require(knitr)
require(rmarkdown)
data(mockstudy)
tab1 <- modelsum(bmi~sex+age, data=mockstudy)
@
\section{Convert Summary.modelsum to LaTeX}
<<echo=TRUE, results='hide', message=FALSE>>=
capture.output(summary(tab1), file="Test.md")
## Convert R Markdown Table to LaTeX
render("Test.md", pdf_document(keep_tex=TRUE))
@
\includepdf{Test.pdf}
\end{document}
modelsum
results to a .CSV fileWhen looking at multiple variables it is sometimes useful to export the results to a csv file. The as.data.frame
function creates a data frame object that can be exported or further manipulated within R.
> summary(tab2, text=T)
| |OR |CI.lower.OR |CI.upper.OR |p.value |concordance |Nmiss |
|:------------------------|:-----|:-----------|:-----------|:-------|:-----------|:-----|
|(Intercept) |0.956 |0.837 |1.091 |0.504 |0.550 |210 |
|ast |1.003 |1.000 |1.006 |0.068 | | |
|(Intercept) |0.957 |0.658 |1.393 |0.820 |0.500 |29 |
|Body Mass Index (kg/m^2) |1.002 |0.988 |1.016 |0.780 | | |
|(Intercept) |1.829 |1.031 |3.248 |0.039 |0.514 |210 |
|hgb |0.956 |0.913 |1.001 |0.058 | | |
> tmp <- as.data.frame(summary(tab2, text = TRUE))
> tmp
OR CI.lower.OR CI.upper.OR p.value concordance1 (Intercept) 0.956 0.837 1.091 0.504 0.550
2 ast 1.003 1.000 1.006 0.068
3 (Intercept) 0.957 0.658 1.393 0.820 0.500
4 Body Mass Index (kg/m^2) 1.002 0.988 1.016 0.780
5 (Intercept) 1.829 1.031 3.248 0.039 0.514
6 hgb 0.956 0.913 1.001 0.058
Nmiss1 210
2
3 29
4
5 210
6
> # write.csv(tmp, '/my/path/here/mymodel.csv')
modelsum
object to a separate Word or HTML file> ## write to an HTML document
> write2html(tab2, "~/ibm/trash.html")
>
> ## write to a Word document
> write2word(tab2, "~/ibm/trash.doc", title="My table in Word")
modelsum
in R ShinyThe easiest way to output a modelsum()
object in an R Shiny app is to use the tableOutput()
UI in combination with the renderTable()
server function and as.data.frame(summary(modelsum()))
:
> # A standalone shiny app
> library(shiny)
> library(arsenal)
> data(mockstudy)
>
> shinyApp(
+ ui = fluidPage(tableOutput("table")),
+ server = function(input, output) {
+ output$table <- renderTable({
+ as.data.frame(summary(modelsum(age ~ sex, data = mockstudy), text = "html"))
+ }, sanitize.text.function = function(x) x)
+ }
+ )
This can be especially powerful if you feed the selections from a selectInput(multiple = TRUE)
into formulize()
to make the table dynamic!
modelsum
in bookdownSince the backbone of modelsum()
is knitr::kable()
, tables still render well in bookdown. However, print.summary.modelsum()
doesn’t use the caption=
argument of kable()
, so some tables may not have a properly numbered caption. To fix this, use the method described on the bookdown site to give the table a tag/ID.
> summary(modelsum(age ~ sex, data = mockstudy), title="(\\#tab:mytableby) Caption here")
You can now use list()
on the left-hand side of modelsum()
to give multiple endpoints. Note that only one “family” can be specified this way (use merge()
instead if you want multiple families).
> summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy))
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 58.053 | 1.614 | < 0.001 | -0.001 | 33 |
Body Mass Index (kg/m^2) | 0.059 | 0.055 | 0.289 | ||
Treatment Arm F: FOLFOX | 0.593 | 0.718 | 0.408 | ||
Treatment Arm G: IROX | 0.171 | 0.819 | 0.834 | ||
(Intercept) | 60.108 | 0.597 | < 0.001 | 0.001 | 0 |
sex Female | -1.232 | 0.611 | 0.044 | ||
Treatment Arm F: FOLFOX | 0.693 | 0.709 | 0.329 | ||
Treatment Arm G: IROX | 0.148 | 0.812 | 0.855 |
estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|
(Intercept) | 11.565 | 0.267 | < 0.001 | 0.005 | 294 |
Body Mass Index (kg/m^2) | 0.028 | 0.009 | 0.003 | ||
Treatment Arm F: FOLFOX | 0.046 | 0.118 | 0.699 | ||
Treatment Arm G: IROX | 0.065 | 0.133 | 0.624 | ||
(Intercept) | 12.505 | 0.096 | < 0.001 | 0.032 | 266 |
sex Female | -0.642 | 0.099 | < 0.001 | ||
Treatment Arm F: FOLFOX | 0.131 | 0.115 | 0.256 | ||
Treatment Arm G: IROX | 0.131 | 0.130 | 0.313 |
To avoid confusion about which table is which endpoint, you can set term.name=TRUE
in summary()
. This takes the labels for each endpoint and puts them in the top-left of the table.
> summary(modelsum(list(age, hgb) ~ bmi + sex, adjust = ~ arm, data = mockstudy), term.name = TRUE)
Age, yrs | estimate | std.error | p.value | adj.r.squared | Nmiss |
---|---|---|---|---|---|
(Intercept) | 58.053 | 1.614 | < 0.001 | -0.001 | 33 |
Body Mass Index (kg/m^2) | 0.059 | 0.055 | 0.289 | ||
Treatment Arm F: FOLFOX | 0.593 | 0.718 | 0.408 | ||
Treatment Arm G: IROX | 0.171 | 0.819 | 0.834 | ||
(Intercept) | 60.108 | 0.597 | < 0.001 | 0.001 | 0 |
sex Female | -1.232 | 0.611 | 0.044 | ||
Treatment Arm F: FOLFOX | 0.693 | 0.709 | 0.329 | ||
Treatment Arm G: IROX | 0.148 | 0.812 | 0.855 |
hgb | estimate | std.error | p.value | adj.r.squared | Nmiss |
---|---|---|---|---|---|
(Intercept) | 11.565 | 0.267 | < 0.001 | 0.005 | 294 |
Body Mass Index (kg/m^2) | 0.028 | 0.009 | 0.003 | ||
Treatment Arm F: FOLFOX | 0.046 | 0.118 | 0.699 | ||
Treatment Arm G: IROX | 0.065 | 0.133 | 0.624 | ||
(Intercept) | 12.505 | 0.096 | < 0.001 | 0.032 | 266 |
sex Female | -0.642 | 0.099 | < 0.001 | ||
Treatment Arm F: FOLFOX | 0.131 | 0.115 | 0.256 | ||
Treatment Arm G: IROX | 0.131 | 0.130 | 0.313 |
You can also specify a grouping variable that doesn’t get tested (but instead separates results): a strata variable.
> summary(modelsum(list(age, hgb) ~ bmi + sex, strata = arm, data = mockstudy))
Treatment Arm | estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|---|
A: IFL | (Intercept) | 59.147 | 2.783 | < 0.001 | -0.002 | 9 |
Body Mass Index (kg/m^2) | 0.019 | 0.100 | 0.851 | |||
(Intercept) | 59.903 | 0.683 | < 0.001 | -0.002 | 0 | |
sex Female | -0.651 | 1.151 | 0.572 | |||
F: FOLFOX | (Intercept) | 57.194 | 2.407 | < 0.001 | 0.001 | 20 |
Body Mass Index (kg/m^2) | 0.112 | 0.087 | 0.197 | |||
(Intercept) | 60.691 | 0.574 | < 0.001 | 0.000 | 0 | |
sex Female | -0.962 | 0.901 | 0.286 | |||
G: IROX | (Intercept) | 59.188 | 2.873 | < 0.001 | -0.003 | 4 |
Body Mass Index (kg/m^2) | 0.023 | 0.104 | 0.822 | |||
(Intercept) | 60.702 | 0.759 | < 0.001 | 0.007 | 0 | |
sex Female | -2.346 | 1.200 | 0.051 |
Treatment Arm | estimate | std.error | p.value | adj.r.squared | Nmiss | |
---|---|---|---|---|---|---|
A: IFL | (Intercept) | 11.247 | 0.459 | < 0.001 | 0.013 | 77 |
Body Mass Index (kg/m^2) | 0.039 | 0.017 | 0.018 | |||
(Intercept) | 12.527 | 0.109 | < 0.001 | 0.037 | 69 | |
sex Female | -0.703 | 0.182 | < 0.001 | |||
F: FOLFOX | (Intercept) | 11.661 | 0.414 | < 0.001 | 0.004 | 157 |
Body Mass Index (kg/m^2) | 0.026 | 0.015 | 0.085 | |||
(Intercept) | 12.661 | 0.095 | < 0.001 | 0.037 | 141 | |
sex Female | -0.707 | 0.151 | < 0.001 | |||
G: IROX | (Intercept) | 11.874 | 0.457 | < 0.001 | 0.001 | 60 |
Body Mass Index (kg/m^2) | 0.019 | 0.017 | 0.264 | |||
(Intercept) | 12.565 | 0.121 | < 0.001 | 0.016 | 56 | |
sex Female | -0.470 | 0.188 | 0.013 |
By putting multiple formulas into a list, you can use multiple sets of adjustors. Use ~ 1
or NULL
for an “unadjusted” model. By using the adjustment.names=TRUE
argument and giving names to your adjustor sets in the list, you can name the various analyses.
> adj.list <- list(
+ Unadjusted = ~ 1, # can also specify NULL here
+ "Adjusted for Arm" = ~ arm
+ )
> multi.adjust <- modelsum(list(age, bmi) ~ fu.time + ast, adjust = adj.list, data = mockstudy)
> summary(multi.adjust, adjustment.names = TRUE)
|adjustment | |estimate |std.error |p.value |adj.r.squared |Nmiss |
|:----------------|:---------------------------|:--------|:---------|:-------|:-------------|:-----|
|Unadjusted |(Intercept) |60.766 |0.512 |< 0.001 |0.002 |0 |
| |**fu.time** |-0.001 |0.001 |0.061 | | |
|Adjusted for Arm |(Intercept) |60.420 |0.663 |< 0.001 |0.002 |0 |
| |**fu.time** |-0.001 |0.001 |0.039 | | |
| |**Treatment Arm F: FOLFOX** |0.868 |0.717 |0.227 | | |
| |**Treatment Arm G: IROX** |0.163 |0.812 |0.841 | | |
|Unadjusted |(Intercept) |61.343 |0.547 |< 0.001 |0.004 |266 |
| |**ast** |-0.030 |0.012 |0.014 | | |
|Adjusted for Arm |(Intercept) |61.236 |0.757 |< 0.001 |0.005 |266 |
| |**ast** |-0.030 |0.012 |0.015 | | |
| |**Treatment Arm F: FOLFOX** |0.653 |0.779 |0.403 | | |
| |**Treatment Arm G: IROX** |-0.728 |0.880 |0.408 | | |
|adjustment | |estimate |std.error |p.value |adj.r.squared |Nmiss |
|:----------------|:---------------------------|:--------|:---------|:-------|:-------------|:-----|
|Unadjusted |(Intercept) |26.494 |0.245 |< 0.001 |0.008 |33 |
| |**fu.time** |0.001 |0.000 |< 0.001 | | |
|Adjusted for Arm |(Intercept) |26.658 |0.317 |< 0.001 |0.007 |33 |
| |**fu.time** |0.001 |0.000 |< 0.001 | | |
| |**Treatment Arm F: FOLFOX** |-0.280 |0.341 |0.413 | | |
| |**Treatment Arm G: IROX** |-0.237 |0.385 |0.538 | | |
|Unadjusted |(Intercept) |27.331 |0.259 |< 0.001 |-0.000 |294 |
| |**ast** |-0.005 |0.006 |0.433 | | |
|Adjusted for Arm |(Intercept) |27.291 |0.356 |< 0.001 |-0.001 |294 |
| |**ast** |-0.004 |0.006 |0.440 | | |
| |**Treatment Arm F: FOLFOX** |0.181 |0.368 |0.623 | | |
| |**Treatment Arm G: IROX** |-0.161 |0.414 |0.698 | | |
> summary(multi.adjust, adjustment.names = TRUE, show.intercept = FALSE, show.adjust = FALSE)
|adjustment | |estimate |std.error |p.value |adj.r.squared |Nmiss |
|:----------------|:-----------|:--------|:---------|:-------|:-------------|:-----|
|Unadjusted |**fu.time** |-0.001 |0.001 |0.061 |0.002 |0 |
|Adjusted for Arm |**fu.time** |-0.001 |0.001 |0.039 |0.002 |0 |
|Unadjusted |**ast** |-0.030 |0.012 |0.014 |0.004 |266 |
|Adjusted for Arm |**ast** |-0.030 |0.012 |0.015 |0.005 |266 |
|adjustment | |estimate |std.error |p.value |adj.r.squared |Nmiss |
|:----------------|:-----------|:--------|:---------|:-------|:-------------|:-----|
|Unadjusted |**fu.time** |0.001 |0.000 |< 0.001 |0.008 |33 |
|Adjusted for Arm |**fu.time** |0.001 |0.000 |< 0.001 |0.007 |33 |
|Unadjusted |**ast** |-0.005 |0.006 |0.433 |-0.000 |294 |
|Adjusted for Arm |**ast** |-0.004 |0.006 |0.440 |-0.001 |294 |
The available summary statistics, by varible type, are:
ordinal
: Ordinal logistic regression models
Nmiss, OR, CI.lower.OR, CI.upper.OR, p.value
estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,
N, Nmiss2, endpoint, std.error, statistic, logLik, AIC, BIC, edf, deviance, df.residual, p.value.lrt
binomial
,quasibinomial
: Logistic regression models
OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss
estimate, CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate,
CI.wald, CI.lower.wald, CI.upper.wald, CI.OR.wald, CI.lower.OR.wald, CI.upper.OR.wald,
N, Nmiss2, Nevents, endpoint, std.error, statistic, logLik, AIC, BIC, null.deviance, deviance, df.residual, df.null, p.value.lrt
gaussian
: Linear regression models
estimate, std.error, p.value, adj.r.squared, Nmiss
CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, statistic,
standard.estimate, endpoint, r.squared, AIC, BIC, logLik, statistic.F, p.value.F, p.value.lrt
poisson
, quasipoisson
: Poisson regression models
RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss
CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error,
estimate, statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, p.value.lrt
negbin
: Negative binomial regression models
RR, CI.lower.RR, CI.upper.RR, p.value, Nmiss
CI.RR, CI.estimate, CI.lower.estimate, CI.upper.estimate, CI.RR, Nmiss2, std.error, estimate,
statistic, endpoint, AIC, BIC, logLik, dispersion, null.deviance, deviance, df.residual, df.null, theta, SE.theta, p.value.lrt
clog
: Conditional Logistic models
OR, CI.lower.OR, CI.upper.OR, p.value, concordance, Nmiss
CI.OR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint, Nevents, statistic,
r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,
statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt
survival
: Cox models
HR, CI.lower.HR, CI.upper.HR, p.value, concordance, Nmiss
CI.HR, CI.estimate, CI.lower.estimate, CI.upper.estimate, N, Nmiss2, estimate, std.error, endpoint,
Nevents, statistic, r.squared, r.squared.max, logLik, AIC, BIC, statistic.log, p.value.log, statistic.sc, p.value.sc,
statistic.wald, p.value.wald, N, std.error.concordance, p.value.lrt
The full description of these parameters that can be shown for models include:
N
: a count of the number of observations used in the analysisNmiss
: only show the count of the number of missing values if there are some missing valuesNmiss2
: always show a count of the number of missing values for a modelendpoint
: dependent variable used in the modelstd.err
: print the standard errorstatistic
: test statisticstatistic.F
: test statistic (F test)p.value
: print the p-valuep.value.lrt
: print the likelihood ratio p-value for the main effect only (not the adjustors)r.squared
: print the model R-squareadj.r.squared
: print the model adjusted R-squarer.squared.max
: print the model R-squareconcordance
: print the model C statistic (which is the AUC for logistic models)logLik
: print the loglikelihood valuep.value.log
: print the p-value for the overall model likelihood testp.value.wald
: print the p-value for the overall model wald testp.value.sc
: print the p-value for overall model score testAIC
: print the Akaike information criterionBIC
: print the Bayesian information criterionnull.deviance
: null deviancedeviance
: model deviancedf.residual
: degrees of freedom for the residualdf.null
: degrees of freedom for the null modeldispersion
: This is used in Poisson models and is defined as the deviance/df.residualstatistic.sc
: overall model score statisticstatistic.wald
: overall model score statisticstatistic.log
: overall model score statisticstd.error.concordance
: standard error for the C statisticHR
: print the hazard ratio (for survival models), i.e. exp(beta)CI.lower.HR, CI.upper.HR
: print the confidence interval for the HROR
: print the odd’s ratio (for logistic models), i.e. exp(beta)CI.lower.OR, CI.upper.OR
: print the confidence interval for the ORCI.lower.OR.wald, CI.upper.OR.wald
: print the Wald confidence interval for the ORRR
: print the risk ratio (for poisson models), i.e. exp(beta)CI.lower.RR, CI.upper.RR
: print the confidence interval for the RRestimate
: print beta coefficientstandardized.estimate
: print the standardized beta coefficientCI.lower.estimate, CI.upper.estimate
: print the confidence interval for the beta coefficientCI.lower.wald, CI.upper.wald
: print the Wald confidence interval for the beta coefficientedf
: print the effective degrees of freedom.theta
: print the estimate of theta.SE.theta
: print the estimate of theta’s standard error.modelsum.control
settingsA quick way to see what arguments are possible to utilize in a function is to use the args()
command. Settings involving the number of digits can be set in modelsum.control
or in summary.modelsum
.
> args(modelsum.control)
function (digits = 3L, digits.ratio = 3L, digits.p = 3L, format.p = TRUE,
show.adjust = TRUE, show.intercept = TRUE, conf.level = 0.95,
ordinal.stats = c("OR", "CI.lower.OR", "CI.upper.OR", "p.value",
"Nmiss"), binomial.stats = c("OR", "CI.lower.OR", "CI.upper.OR",
"p.value", "concordance", "Nmiss"), gaussian.stats = c("estimate",
"std.error", "p.value", "adj.r.squared", "Nmiss"), poisson.stats = c("RR",
"CI.lower.RR", "CI.upper.RR", "p.value", "Nmiss"), negbin.stats = c("RR",
"CI.lower.RR", "CI.upper.RR", "p.value", "Nmiss"), relrisk.stats = c("RR",
"CI.lower.RR", "CI.upper.RR", "p.value", "Nmiss"), clog.stats = c("OR",
"CI.lower.OR", "CI.upper.OR", "p.value", "concordance",
"Nmiss"), survival.stats = c("HR", "CI.lower.HR", "CI.upper.HR",
"p.value", "concordance", "Nmiss"), stat.labels = list(),
...) NULL
summary.modelsum
settingsThe summary.modelsum function has options that modify how the table appears (such as adding a title or modifying labels).
> args(arsenal:::summary.modelsum)
function (object, ..., labelTranslations = NULL, text = FALSE,
title = NULL, term.name = "", adjustment.names = FALSE)
NULL
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.