The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In this vignette, we compare the computation time/memory usage of
dense matrix
and sparse Matrix
.
We begin with an analysis of the time/memory it takes to create these
objects. In the atime
code below, we allocate a vector
for
comparison, and we specify a result
function which computes the
length
of the object x
created by each expression. This means
atime
will save length
as a function of data size N
(in addition
to time and memory).
library(Matrix)
N_seq <- as.integer(10^seq(1,7,by=0.25))
vec.mat.result <- atime::atime(
N=N_seq,
vector=numeric(N),
matrix=matrix(0, N, N),
Matrix=Matrix(0, N, N),
result=function(x)data.frame(length=length(x)))
plot(vec.mat.result)
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
The plot above shows three panels, one for each unit.
kilobytes
is the amount of memory used. We see that Matrix
and
vector
use the same amount of memory asymptotically, whereas
matrix
uses more (larger slope on the log-log plot implies larger
asymptotic complexity class).length
is the value returned by the length
function. We see that
matrix
and Matrix
have the same value, whereas vector
has
asymptotically smaller length (smaller slope on log-log plot).seconds
is the amount of time taken. We see that Matrix
is
slower than vector
and matrix
by a small constant overhead,
which can be seen for small N
. We also see that for large N
,
Matrix
and vector
have the same asymptotic time complexity,
which is much faster than matrix
.bench::press
An alternative method to compute asymptotic timings is via
bench::press
, which provides functionality for parameterized
benchmarking (similar to atime_grid
). Because atime()
has special
treatment of the N
parameter, the code required for asymptotic
measurement is relatively simple; compare the atime
code above to
the bench::press
code below, which measures the same asymptotic
quantities (seconds, kilobytes, length).
seconds.limit <- 0.01
done.vec <- NULL
measure.vars <- c("seconds","kilobytes","length")
press_result <- bench::press(
N = N_seq,
{
exprs <- function(...){
as.list(match.call()[-1])
}
elist <- exprs(
vector=numeric(N),
matrix=matrix(0, N, N),
Matrix=Matrix(0, N, N))
elist[names(done.vec)] <- NA #Don't run exprs which already exceeded limit.
mark.args <- c(elist, list(iterations=10, check=FALSE))
mark.result <- do.call(bench::mark, mark.args)
## Rename some columns for easier interpretation.
desc.vec <- attr(mark.result$expression, "description")
mark.result$description <- desc.vec
mark.result$seconds <- as.numeric(mark.result$median)
mark.result$kilobytes <- as.numeric(mark.result$mem_alloc/1024)
## Compute length column to measure in addition to time/memory.
mark.result$length <- NA
for(desc.i in seq_along(desc.vec)){
description <- desc.vec[[desc.i]]
result <- eval(elist[[description]])
mark.result$length[desc.i] <- length(result)
}
## Set NA time/memory/length for exprs which were not run.
mark.result[desc.vec %in% names(done.vec), measure.vars] <- NA
## If expr went over time limit, indicate it is done.
over.limit <- mark.result$seconds > seconds.limit
over.desc <- desc.vec[is.finite(mark.result$seconds) & over.limit]
done.vec[over.desc] <<- TRUE
mark.result
}
)
#> Running with:
#> N
#> 1 10
#> 2 17
#> 3 31
#> 4 56
#> 5 100
#> 6 177
#> 7 316
#> 8 562
#> 9 1000
#> 10 1778
#> 11 3162
#> 12 5623
#> 13 10000
#> 14 17782
#> 15 31622
#> 16 56234
#> 17 100000
#> 18 177827
#> 19 316227
#> 20 562341
#> 21 1000000
#> 22 1778279
#> 23 3162277
#> 24 5623413
#> 25 10000000
The bench::press
code above is relatively complicated, because it re-implements two functions that are provided by atime:
N
values. This keeps overall computation reasonable, even when comparing expressions which have different asymptotic time complexity (such as quadratic for matrix
and linear for Matrix
in this example).seconds
and kilobytes
as a function of N
(such as length
in this example), then atime
makes that easy (just provide a result
function), whereas it is more complex to implement in bench::press
(for loop is required).Below we visualize the results from bench::press
,
library(data.table)
(press_long <- melt(
data.table(press_result),
measure.vars=measure.vars,
id.vars=c("N","description"),
na.rm=TRUE))
#> N description variable value
#> <int> <char> <fctr> <num>
#> 1: 10 vector seconds 1.050000e-06
#> 2: 10 matrix seconds 2.850000e-06
#> 3: 10 Matrix seconds 4.426000e-04
#> 4: 17 vector seconds 1.300000e-06
#> 5: 17 matrix seconds 3.300000e-06
#> ---
#> 164: 1000000 Matrix length 1.000000e+12
#> 165: 1778279 vector length 1.778279e+06
#> 166: 1778279 Matrix length 3.162276e+12
#> 167: 3162277 vector length 3.162277e+06
#> 168: 3162277 Matrix length 9.999996e+12
if(require(ggplot2)){
gg <- ggplot()+
ggtitle("bench::press results for comparison")+
facet_grid(variable ~ ., labeller=label_both, scales="free")+
geom_line(aes(
N, value,
color=description),
data=press_long)+
scale_x_log10(limits=c(NA, max(press_long$N*2)))+
scale_y_log10("")
if(requireNamespace("directlabels")){
directlabels::direct.label(gg,"right.polygons")
}else gg
}
#> Warning in scale_y_log10(""): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
We can see that the plot from atime
and bench::press
are consistent.
Below we estimate the best asymptotic complexity classes:
vec.mat.best <- atime::references_best(vec.mat.result)
plot(vec.mat.best)
#> Warning in ggplot2::scale_y_log10(""): log-10 transformation introduced infinite values.
The plot above shows that
matrix
has time, memory, and length
which are all quadratic O(N^2)
.Matrix
has linear O(N)
time and memory, but O(N^2)
values for
length
.vector
has time, memory, and length
which are all linear O(N)
.Below we estimate the throughput for some given limits:
vec.mat.pred <- predict(
vec.mat.best,
seconds=vec.mat.result$seconds.limit,
kilobytes=1000,
length=1e6)
plot(vec.mat.pred)
#> Warning in ggplot2::scale_x_log10("N", breaks = meas[, 10^seq(ceiling(min(log10(N))), : log-10 transformation
#> introduced infinite values.
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
In the plot above we can see the throughput N
for a given limit of
kilobytes
, length
or seconds
. Below we use Matrix
as a
reference, and compute the throughput ratio, Matrix
to other.
library(data.table)
dcast(vec.mat.pred$prediction[
, ratio := N[expr.name=="Matrix"]/N, by=unit
], unit + unit.value ~ expr.name, value.var="ratio")
#> Key: <unit, unit.value>
#> unit unit.value Matrix matrix vector
#> <char> <num> <num> <num> <num>
#> 1: kilobytes 1e+03 1 357.6434 0.9996669
#> 2: length 1e+06 1 1.0000 0.0010000
#> 3: seconds 1e-02 1 1121.5711 0.7316179
From the table above (matrix
column), we can see that the throughput
of Matrix
is 100-1000x larger than matrix
, for the given limits.
First we show the difference between sparse and dense matrix multiplication, when the matrix has 90% zeros (10% non-zeros).
library(Matrix)
sparse.prop <- 0.9
dense.prop <- 1-sparse.prop
mult.result <- atime::atime(
N=as.integer(10^seq(1,4,by=0.25)),
setup={
m <- matrix(0, N, N)
set.seed(1)
w <- rnorm(N)
N.not.zero <- as.integer(dense.prop*N^2)
m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
M <- Matrix(m)
},
sparse = M %*% w,
dense = m %*% w,
result=TRUE)
plot(mult.result)
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
Above we see that sparse
is faster than dense
, but by constant
factors.
Below we estimate the best asymptotic complexity classes:
mult.best <- atime::references_best(mult.result)
plot(mult.best)
#> Warning in ggplot2::scale_y_log10(""): log-10 transformation introduced infinite values.
Above we see that both sparse
and dense
matrix multiplication are
quadratic O(N^2)
time (for a quadratic number of non-zero entries).
Finally, we verify below that both methods yield the same result:
library(data.table)
mult.compare <- dcast(
mult.result$measurements, N ~ expr.name, value.var="result"
)[
, equal := paste(all.equal(as.numeric(dense[[1]]), as.numeric(sparse[[1]])))
, by=N
][]
tibble::tibble(mult.compare)
#> # A tibble: 13 × 4
#> N dense sparse equal
#> <int> <list> <list> <chr>
#> 1 10 <dbl [10 × 1]> <dgeMatrx[,1]> TRUE
#> 2 17 <dbl [17 × 1]> <dgeMatrx[,1]> TRUE
#> 3 31 <dbl [31 × 1]> <dgeMatrx[,1]> TRUE
#> 4 56 <dbl [56 × 1]> <dgeMatrx[,1]> TRUE
#> 5 100 <dbl [100 × 1]> <dgeMatrx[,1]> TRUE
#> 6 177 <dbl [177 × 1]> <dgeMatrx[,1]> TRUE
#> 7 316 <dbl [316 × 1]> <dgeMatrx[,1]> TRUE
#> 8 562 <dbl [562 × 1]> <dgeMatrx[,1]> TRUE
#> 9 1000 <dbl [1,000 × 1]> <dgeMatrx[,1]> TRUE
#> 10 1778 <dbl [1,778 × 1]> <dgeMatrx[,1]> TRUE
#> 11 3162 <dbl [3,162 × 1]> <dgeMatrx[,1]> TRUE
#> 12 5623 <NULL> <dgeMatrx[,1]> Numeric: lengths (0, 5623) differ
#> 13 10000 <NULL> <dgeMatrx[,1]> Numeric: lengths (0, 10000) differ
Next we show the difference between sparse and dense matrix multiplication, when the matrix has a linear number of non-zeros (asymptotically fewer than in the previous section).
library(Matrix)
mult.result <- atime::atime(
N=as.integer(10^seq(1,4,by=0.25)),
setup={
m <- matrix(0, N, N)
set.seed(1)
w <- rnorm(N)
N.not.zero <- N
m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
M <- Matrix(m)
},
sparse = M %*% w,
dense = m %*% w,
result=TRUE)
plot(mult.result)
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
Above we see that sparse
is asymptotically faster than dense
(different asymptotic slopes).
Below we estimate the best asymptotic complexity classes:
mult.best <- atime::references_best(mult.result)
plot(mult.best)
#> Warning in ggplot2::scale_y_log10(""): log-10 transformation introduced infinite values.
Above we see that sparse
is linear O(N)
time whereas dense
is
quadratic O(N^2)
time (for a linear number of non-zero entries).
Finally, we verify below that both methods yield the same result:
library(data.table)
mult.compare <- dcast(
mult.result$measurements, N ~ expr.name, value.var="result"
)[
, equal := paste(all.equal(as.numeric(dense[[1]]), as.numeric(sparse[[1]])))
, by=N
][]
tibble::tibble(mult.compare)
#> # A tibble: 13 × 4
#> N dense sparse equal
#> <int> <list> <list> <chr>
#> 1 10 <dbl [10 × 1]> <dgeMatrx[,1]> TRUE
#> 2 17 <dbl [17 × 1]> <dgeMatrx[,1]> TRUE
#> 3 31 <dbl [31 × 1]> <dgeMatrx[,1]> TRUE
#> 4 56 <dbl [56 × 1]> <dgeMatrx[,1]> TRUE
#> 5 100 <dbl [100 × 1]> <dgeMatrx[,1]> TRUE
#> 6 177 <dbl [177 × 1]> <dgeMatrx[,1]> TRUE
#> 7 316 <dbl [316 × 1]> <dgeMatrx[,1]> TRUE
#> 8 562 <dbl [562 × 1]> <dgeMatrx[,1]> TRUE
#> 9 1000 <dbl [1,000 × 1]> <dgeMatrx[,1]> TRUE
#> 10 1778 <dbl [1,778 × 1]> <dgeMatrx[,1]> TRUE
#> 11 3162 <dbl [3,162 × 1]> <dgeMatrx[,1]> TRUE
#> 12 5623 <NULL> <dgeMatrx[,1]> Numeric: lengths (0, 5623) differ
#> 13 10000 <NULL> <dgeMatrx[,1]> Numeric: lengths (0, 10000) differ
In this section we show how you can code both comparisons at the same time, without repetition. The trick is to first define a list of parameters to vary:
param.list <- list(
non_zeros=c("N","N^2/10"),
fun=c("matrix","Matrix")
)
After that we create a grid of expressions to evaluate, by expanding the parameter grid:
(expr.list <- atime::atime_grid(
param.list,
Mw=L[[fun]][[non_zeros]]%*%w,
collapse="\n"))
#> $`Mw non_zeros=N\nfun=Matrix`
#> L[["Matrix"]][["N"]] %*% w
#>
#> $`Mw non_zeros=N\nfun=matrix`
#> L[["matrix"]][["N"]] %*% w
#>
#> $`Mw non_zeros=N^2/10\nfun=Matrix`
#> L[["Matrix"]][["N^2/10"]] %*% w
#>
#> $`Mw non_zeros=N^2/10\nfun=matrix`
#> L[["matrix"]][["N^2/10"]] %*% w
#>
#> attr(,"parameters")
#> expr.name expr.grid non_zeros fun
#> <char> <char> <char> <char>
#> 1: Mw non_zeros=N\nfun=Matrix Mw N Matrix
#> 2: Mw non_zeros=N\nfun=matrix Mw N matrix
#> 3: Mw non_zeros=N^2/10\nfun=Matrix Mw N^2/10 Matrix
#> 4: Mw non_zeros=N^2/10\nfun=matrix Mw N^2/10 matrix
Finally we pass the list of expressions to atime
, along with a
setup
argument which creates the required list L
of input data,
based on the parameters:
mult.result <- atime::atime(
N=as.integer(10^seq(1,3.5,by=0.25)),
setup={
L <- list()
set.seed(1)
w <- rnorm(N)
for(non_zeros in param.list$non_zeros){
N.not.zero <- as.integer(eval(str2lang(non_zeros)))
m <- matrix(0, N, N)
m[sample(N^2, N.not.zero)] <- rnorm(N.not.zero)
for(fun in param.list$fun){
L[[fun]][[non_zeros]] <- get(fun)(as.numeric(m), N, N)
}
}
},
expr.list=expr.list)
plot(mult.result)
#> Warning in ggplot2::scale_y_log10("median line, min/max band"): log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
#> log-10 transformation introduced infinite values.
Below we estimate the best asymptotic complexity classes:
mult.best <- atime::references_best(mult.result)
plot(mult.best)
#> Warning in ggplot2::scale_y_log10(""): log-10 transformation introduced infinite values.
Below we show an alternative visualization:
only.seconds <- mult.best
only.seconds$measurements <- mult.best$measurements[unit=="seconds"]
only.seconds$plot.references <- mult.best$plot.references[unit=="seconds"]
if(require(ggplot2)){
plot(only.seconds)+
facet_grid(non_zeros ~ fun, labeller=label_both)
}
Overall in this vignette we have shown how atime
can be used to
demonstrate when sparse matrices can be used for efficient
computations.
We also showed a comparison between atime
and bench::press
, which
highlighted two areas where atime
is more convenient (stopping after
exceeding a time limit, and measuring quantities other than
time/memory as a function of data size N
).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.