The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
You can make a bootstrap simulation for model prediction. When writing bootPredict function and this vignette, I was inspired from package finalfit by Ewen Harrison. For example, you can predict survival after diagnosis of breast cancer.
library(autoReg)
library(dplyr) # for use `%>%`
data(GBSG2,package="TH.data")
head(GBSG2)
horTh age menostat tsize tgrade pnodes progrec estrec time cens
1 no 70 Post 21 II 3 48 66 1814 1
2 yes 56 Post 12 II 7 61 77 2018 1
3 yes 58 Post 35 II 9 52 271 712 1
4 yes 59 Post 17 II 4 60 29 1807 1
5 no 73 Post 35 II 1 26 65 772 1
6 no 32 Pre 57 III 24 0 13 448 1
Data GBGS2
in TH.data package is a data frame containing
the observations from the German Breast Cancer Study Group 2. In this
data, the survival status of patients is coded as 0 or 1 in the variable
cens
. Whether the patient receive the hormonal therapy or
not is recorded as ‘no’ or ‘yes’ in variable horTh
. The
number of positive lymph nodes are recoded in pnodes. You can make a
logistic regression model with the following R code.
GBSG2$cens.factor=factor(GBSG2$cens,labels=c("Alive","Died"))
fit=glm(cens.factor~horTh+pnodes+menostat,data=GBSG2,family="binomial")
summary(fit)
Call:
glm(formula = cens.factor ~ horTh + pnodes + menostat, family = "binomial",
data = GBSG2)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.79237 0.15183 -5.219 1.80e-07 ***
horThyes -0.47782 0.17578 -2.718 0.00656 **
pnodes 0.10853 0.01818 5.970 2.38e-09 ***
menostatPost 0.29375 0.16905 1.738 0.08228 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 939.68 on 685 degrees of freedom
Residual deviance: 887.36 on 682 degrees of freedom
AIC: 895.36
Number of Fisher Scoring iterations: 4
You can make a publication-ready table with the following R command.
Dependent: cens.factor |
| Alive (N=387) | Died (N=299) | OR (multivariable) |
---|---|---|---|---|
horTh | no | 235 (60.7%) | 205 (68.6%) | |
yes | 152 (39.3%) | 94 (31.4%) | 0.62 (0.44-0.88, p=.007) | |
pnodes | Mean ± SD | 3.8 ± 4.6 | 6.5 ± 6.1 | 1.11 (1.08-1.16, p<.001) |
menostat | Pre | 171 (44.2%) | 119 (39.8%) | |
Post | 216 (55.8%) | 180 (60.2%) | 1.34 (0.96-1.87, p=.082) | |
You can draw a plot summarizing the model.
For bootstrapping simulation, you can make new data with the following R code.
newdata=expand.grid(horTh=factor(c(1,2),labels=c("no","yes")),
pnodes=1:51,
menostat=factor(c(1,2),labels=c("Pre","Post")))
You can make a bootstrapping simulation with bootPredict() function. You can set the number of simulation by adjusting R argument.
df=bootPredict(fit,newdata,R=500)
head(df)
horTh pnodes menostat estimate lower upper
1 no 1 Pre 0.3354033 0.2692219 0.3999833
2 yes 1 Pre 0.2383652 0.1701567 0.3221579
3 no 2 Pre 0.3600105 0.2979548 0.4219831
4 yes 2 Pre 0.2586235 0.1900193 0.3398951
5 no 3 Pre 0.3853762 0.3245573 0.4454259
6 yes 3 Pre 0.2799707 0.2082833 0.3609657
With this result, you can draw a plot showing bootstrapping prediction of breast cancer.
library(ggplot2)
ggplot(df,aes(x=pnodes,y=estimate))+
geom_line(aes(color=horTh))+
geom_ribbon(aes(ymin=lower,ymax=upper,fill=horTh),alpha=0.2)+
facet_wrap(~menostat)+
theme_bw()+
labs(x="Number of positive lymph nodes", y="Probability of death")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.