The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette demonstrates how to use the Nested Sampling approach to obtain the marginal likelihood and a Bayes factor, as described in [1]
babette
needs to have ‘BEAST2’ installed to work.
In the case ‘BEAST2’ is not installed, we’ll use this fabricated data:
out_jc69 <- create_test_bbt_run_output()
out_jc69$ns$marg_log_lik <- c(-1.1)
out_jc69$ns$marg_log_lik_sd <- c(0.1)
out_gtr <- out_jc69
Here we setup how to interpret the Bayes factor:
interpret_bayes_factor <- function(bayes_factor) {
if (bayes_factor < 10^-2.0) {
"decisive for GTR"
} else if (bayes_factor < 10^-1.5) {
"very strong for GTR"
} else if (bayes_factor < 10^-1.0) {
"strong for GTR"
} else if (bayes_factor < 10^-0.5) {
"substantial for GTR"
} else if (bayes_factor < 10^0.0) {
"barely worth mentioning for GTR"
} else if (bayes_factor < 10^0.5) {
"barely worth mentioning for JC69"
} else if (bayes_factor < 10^1.0) {
"substantial for JC69"
} else if (bayes_factor < 10^1.5) {
"strong for JC69"
} else if (bayes_factor < 10^2.0) {
"very strong for JC69"
} else {
"decisive for JC69"
}
}
# Should all be TRUE
interpret_bayes_factor(1 / 123.0) == "decisive for GTR"
#> [1] TRUE
interpret_bayes_factor(1 / 85.0) == "very strong for GTR"
#> [1] TRUE
interpret_bayes_factor(1 / 12.5) == "strong for GTR"
#> [1] TRUE
interpret_bayes_factor(1 / 8.5) == "substantial for GTR"
#> [1] TRUE
interpret_bayes_factor(1 / 1.5) == "barely worth mentioning for GTR"
#> [1] TRUE
interpret_bayes_factor(0.99) == "barely worth mentioning for GTR"
#> [1] TRUE
interpret_bayes_factor(1.01) == "barely worth mentioning for JC69"
#> [1] TRUE
interpret_bayes_factor(1.5) == "barely worth mentioning for JC69"
#> [1] TRUE
interpret_bayes_factor(8.5) == "substantial for JC69"
#> [1] TRUE
interpret_bayes_factor(12.5) == "strong for JC69"
#> [1] TRUE
interpret_bayes_factor(85.0) == "very strong for JC69"
#> [1] TRUE
interpret_bayes_factor(123.0) == "decisive for JC69"
#> [1] TRUE
In this experiment, we will use the same DNA alignment to see which DNA nucleotide substitution model is the better fit.
Load the DNA alignment, a subset of taxa from [2]:
In this vignette, the MCMC run is set up to be short:
For academic research, better use a longer MCMC chain (with an effective sample size above 200).
Here we do two ‘BEAST2’ runs, with both site models:
if (is_beast2_installed() && is_beast2_pkg_installed("NS")) {
inference_model <- create_inference_model(
site_model = beautier::create_jc69_site_model(),
mcmc = mcmc
)
beast2_options <- create_beast2_options(
beast2_path = beastier::get_default_beast2_bin_path()
)
out_jc69 <- bbt_run_from_model(
fasta_filename = fasta_filename,
inference_model = inference_model,
beast2_options = beast2_options
)
bbt_delete_temp_files(
inference_model = inference_model,
beast2_options = beast2_options
)
inference_model <- create_inference_model(
site_model = beautier::create_gtr_site_model(),
mcmc = mcmc
)
beast2_options <- create_beast2_options(
beast2_path = beastier::get_default_beast2_bin_path()
)
out_gtr <- bbt_run_from_model(
fasta_filename = fasta_filename,
inference_model = inference_model,
beast2_options = beast2_options
)
bbt_delete_temp_files(
inference_model = inference_model,
beast2_options = beast2_options
)
}
I will display the marginal likelihoods in a nice table:
if (is_beast2_installed() && is_beast2_pkg_installed("NS")) {
df <- data.frame(
model = c("JC69", "GTR"),
mar_log_lik = c(out_jc69$ns$marg_log_lik, out_gtr$ns$marg_log_lik),
mar_log_lik_sd = c(out_jc69$ns$marg_log_lik_sd, out_gtr$ns$marg_log_lik_sd)
)
knitr::kable(df)
}
The Bayes factor is ratio between the marginal (non-log) likelihoods. In this case, we use the simpler JC69 model as a focus:
if (is_beast2_installed() && is_beast2_pkg_installed("NS")) {
bayes_factor <- exp(out_jc69$ns$marg_log_lik) / exp(out_gtr$ns$marg_log_lik)
print(interpret_bayes_factor(bayes_factor))
}
Whatever the support is, be sure to take the error of the marginal likelihood estimation into account.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.