The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Following are some examples of how the bagyo
dataset can
be used to demonstrate various data wrangling approaches, particularly
those using the tidyverse
packages.
## Get number of cyclone categories per year ----
bagyo |>
group_by(year, category_name) |>
count() |>
group_by(year) |>
complete(category_name) |>
ungroup()
#> # A tibble: 20 × 3
#> year category_name n
#> <dbl> <fct> <int>
#> 1 2017 Tropical Depression 5
#> 2 2017 Tropical Storm 9
#> 3 2017 Severe Tropical Storm 5
#> 4 2017 Typhoon 3
#> 5 2017 Super Typhoon NA
#> 6 2018 Tropical Depression 4
#> 7 2018 Tropical Storm 7
#> 8 2018 Severe Tropical Storm 4
#> 9 2018 Typhoon 6
#> 10 2018 Super Typhoon NA
#> 11 2019 Tropical Depression 8
#> 12 2019 Tropical Storm 2
#> 13 2019 Severe Tropical Storm 3
#> 14 2019 Typhoon 8
#> 15 2019 Super Typhoon NA
#> 16 2020 Tropical Depression 6
#> 17 2020 Tropical Storm 7
#> 18 2020 Severe Tropical Storm 3
#> 19 2020 Typhoon 4
#> 20 2020 Super Typhoon 2
## Get yearly mean cyclone pressure and speed ----
bagyo |>
group_by(year) |>
summarise(mean_pressure = mean(pressure), mean_speed = mean(speed))
#> # A tibble: 4 × 3
#> year mean_pressure mean_speed
#> <dbl> <dbl> <dbl>
#> 1 2017 986. 88.0
#> 2 2018 961. 66.7
#> 3 2019 976. 59.0
#> 4 2020 973. 62.0
## Get cyclone category mean pressure and speed ----
bagyo |>
group_by(category_name) |>
summarise(
n = n(),
mean_pressure = mean(pressure),
mean_speed = mean(speed)
)
#> # A tibble: 5 × 4
#> category_name n mean_pressure mean_speed
#> <fct> <int> <dbl> <dbl>
#> 1 Tropical Depression 23 996. 39.8
#> 2 Tropical Storm 25 986. 61.6
#> 3 Severe Tropical Storm 15 978. 75
#> 4 Typhoon 21 941. 102.
#> 5 Super Typhoon 2 908. 112.
## Get cyclone category mean duration (in hours) ----
bagyo |>
mutate(duration = end - start) |>
group_by(category_name) |>
summarise(mean_duration = mean(duration))
#> # A tibble: 5 × 2
#> category_name mean_duration
#> <fct> <drtn>
#> 1 Tropical Depression 46.69565 hours
#> 2 Tropical Storm 57.48000 hours
#> 3 Severe Tropical Storm 79.13333 hours
#> 4 Typhoon 106.66667 hours
#> 5 Super Typhoon 77.50000 hours
## Get number of cyclones per month by year ----
bagyo |>
mutate(month = month(start, label = TRUE)) |>
group_by(month, year) |>
count() |>
ungroup() |>
complete(month, year, fill = list(n = 0)) |>
arrange(year, month)
#> # A tibble: 48 × 3
#> month year n
#> <ord> <dbl> <int>
#> 1 Jan 2017 1
#> 2 Feb 2017 1
#> 3 Mar 2017 0
#> 4 Apr 2017 2
#> 5 May 2017 0
#> 6 Jun 2017 0
#> 7 Jul 2017 4
#> 8 Aug 2017 2
#> 9 Sep 2017 4
#> 10 Oct 2017 3
#> # ℹ 38 more rows
Following are some examples of how the bagyo
dataset can
be used to demonstrate various data visualisation approaches,
particularly those using the tidyverse
and
ggplot2
packages.
## Get cyclone category mean duration (in hours) ----
bagyo |>
mutate(duration = end - start) |>
group_by(category_name) |>
summarise(mean_duration = mean(duration)) |>
ggplot(mapping = aes(x = mean_duration, y = category_name)) +
geom_col(colour = "#4b876e", fill = "#4b876e", alpha = 0.5) +
labs(
title = "Mean duration of cyclones",
subtitle = "By cyclone categories",
x = "mean duration (hours)",
y = NULL
) +
theme_minimal() +
theme(
panel.grid.minor.x = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
## Cyclone speed by presssure ----
bagyo |>
dplyr::mutate(year = factor(year)) |>
ggplot(mapping = aes(x = speed, y = pressure)) +
geom_point(mapping = aes(colour = category_name), size = 3, alpha = 0.5) +
scale_colour_manual(
name = NULL,
values = c("#9c5e60", "#4b876e", "#465b92", "#e5be72", "#5d0505")
) +
labs(
title = "Cyclone maximum sustained wind speed and maximum central pressure",
subtitle = "By cyclone categories and year",
x = "wind speed (km/h)",
y = "central pressure (hPa)"
) +
facet_wrap(. ~ year, ncol = 4) +
theme_bw() +
theme(
legend.position = "top",
strip.background = element_rect(
fill = alpha("#465b92", 0.7), colour = "#465b92"
),
panel.border = element_rect(colour = "#465b92"),
panel.grid.minor = element_blank()
)
bagyo |>
mutate(
year = factor(year),
duration = as.numeric(end - start)
) |>
ggplot(mapping = aes(x = speed, y = duration)) +
geom_point(
mapping = aes(colour = year, shape = year), size = 3, alpha = 0.5
) +
geom_smooth(
mapping = aes(colour = year), method = "lm", se = FALSE, linewidth = 0.75
) +
scale_colour_manual(
values = c("#9c5e60", "#4b876e", "#465b92", "#e5be72")
) +
scale_shape_manual(values = 15:18) +
labs(
title = "Maximum sustained wind speed by duration of cyclones",
subtitle = "2017-2020",
x = "speed (km/h)", y = "duration (hours)",
colour = "Year", shape = "Year"
) +
theme_minimal() +
theme(legend.position = "top")
## Get number of cyclones per month by year and plot ----
bagyo |>
mutate(month = month(start, label = TRUE)) |>
group_by(month, year) |>
count() |>
ungroup() |>
complete(month, year, fill = list(n = 0)) |>
arrange(year, month) |>
ggplot(mapping = aes(x = month, y = n)) +
geom_col(colour = "#4b876e", fill = "#4b876e", alpha = 0.5) +
scale_y_continuous(breaks = seq(from = 0, to = 6, by = 1)) +
labs(
title = "Number of cyclones over time",
subtitle = "2017-2020",
x = NULL,
y = "n"
) +
facet_wrap(. ~ year, ncol = 4) +
theme_bw() +
theme(
strip.background = element_rect(
fill = alpha("#465b92", 0.7), colour = "#465b92"
),
panel.border = element_rect(colour = "#465b92"),
panel.grid.minor.y = element_blank(),
panel.grid.major.x = element_blank(),
axis.text.x = element_text(size = 10, angle = 90, hjust = 1, vjust = 0.5)
)
bagyo |>
mutate(year = factor(year)) |>
ggplot(mapping = aes(x = year, y = speed)) +
geom_boxplot(colour = "#4b876e", fill = "#4b876e", alpha = 0.5) +
labs(
title = "Distribution of tropical cyclone maximum sustained wind speed",
subtitle = "2017-2022",
x = NULL, y = "speed (km/h)"
) +
theme_minimal() +
theme(panel.grid.major.x = element_blank())
bagyo |>
mutate(year = factor(year)) |>
ggplot(mapping = aes(x = year, y = speed)) +
geom_boxplot(colour = "#4b876e") +
geom_jitter(
colour = "#4b876e", fill = "#4b876e", alpha = 0.5,
shape = 21, size = 2, width = 0.2
) +
labs(
title = "Distribution of tropical cyclone maximum sustained wind speed",
subtitle = "2017-2022",
x = NULL, y = "speed (km/h)"
) +
theme_minimal() +
theme(panel.grid.major.x = element_blank())
bagyo |>
mutate(year = factor(year)) |>
ggplot(mapping = aes(x = year, y = speed)) +
geom_violin(colour = "#4b876e", fill = "#4b876e", alpha = 0.5) +
geom_jitter(colour = "#4b876e", size = 3, width = 0.2) +
labs(
title = "Distribution of tropical cyclone maximum sustained wind speed",
subtitle = "2017-2022",
x = NULL, y = "speed (km/h)"
) +
theme_minimal() +
theme(panel.grid.major.x = element_blank())
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.