The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Benchmark

Michel Lang

2018-05-14

This small benchmark compares the performance of the base64 encoding/decoding in package base64url with the implementations in the packages base64enc and openssl.

Encoding of a single string

library(base64url)
library(base64enc)
library(openssl)
library(microbenchmark)

x = "plain text"
microbenchmark(
  base64url = base64_urlencode(x),
  base64enc = base64encode(charToRaw(x)),
  openssl = base64_encode(x)
)
## Unit: nanoseconds
##       expr   min      lq     mean  median      uq    max neval
##  base64url   408   461.5   853.52   698.0   782.5  20430   100
##  base64enc  1199  1367.0  3114.89  1865.0  1983.5 139937   100
##    openssl 13188 13536.0 15256.11 13749.5 14081.5 135871   100

Decoding of a single string

x = "N0JBLlRaUTp1bi5KOW4xWStNWEJoLHRQaDZ3"
microbenchmark(
  base64url = base64_urldecode(x),
  base64enc = rawToChar(base64decode(x)),
  openssl = rawToChar(base64_decode(x))
)
## Unit: nanoseconds
##       expr   min      lq     mean  median    uq    max neval
##  base64url   423   485.0  1104.57   655.5   923  40442   100
##  base64enc  1504  1681.5  2879.92  2225.5  2546  76432   100
##    openssl 19066 19643.0 21264.27 19915.5 20281 119636   100

Encoding and decoding of character vectors

Here, the task has changed from encoding/decoding a single string to processing multiple strings stored inside a character vector. First, we create a small utility function which returns n random strings with a random number of characters (between 1 and 32) each.

rand = function(n, min = 1, max = 32) {
  chars = c(letters, LETTERS, as.character(0:9), c(".", ":", ",", "+", "-", "*", "/"))
  replicate(n, paste0(sample(chars, sample(min:max, 1), replace = TRUE), collapse = ""))
}
set.seed(1)
rand(10)
##  [1] "zN.n9+TRe"                     "mVA1IX/"                      
##  [3] "1,oSisAaA8xHP"                 "m5U2hXC4S2MK2bGY"             
##  [5] "G7EqegvJTC.uFwSrH0f8x5x"       "G97A1-DXBw0"                  
##  [7] "XiqjqeS"                       "13FC3PTys/RoiG:P*YyDkaXhES/IH"
##  [9] "0FJopP"                        "fcS,PMK*JVPqrYFmZh7"

Only base64url is vectorized for string input, the alternative implementations need wrappers to process character vectors:

base64enc_encode = function(x) {
  vapply(x, function(x) base64encode(charToRaw(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_encode = function(x) {
  vapply(x, function(x) base64_encode(x), NA_character_, USE.NAMES = FALSE)
}

base64enc_decode = function(x) {
  vapply(x, function(x) rawToChar(base64decode(x)), NA_character_, USE.NAMES = FALSE)
}

openssl_decode = function(x) {
  vapply(x, function(x) rawToChar(base64_decode(x)), NA_character_, USE.NAMES = FALSE)
}

The following benchmark measures the runtime to encode 1000 random strings and then decode them again:

set.seed(1)
x = rand(1000)
microbenchmark(
  base64url = base64_urldecode(base64_urlencode(x)),
  base64enc = base64enc_decode(base64enc_encode(x)),
  openssl = openssl_decode(openssl_encode(x))
)
## Unit: microseconds
##       expr       min         lq      mean     median        uq       max
##  base64url   214.031   222.0655   270.415   260.3725   311.967   441.127
##  base64enc  3613.444  3974.8940  4228.395  4058.2495  4157.485 11094.540
##    openssl 34166.572 35453.3810 36002.175 35794.9835 36349.533 42507.878
##  neval
##    100
##    100
##    100

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.