The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Welcome to bayclumpr
! Before we get started with this
tutorial, we would like to remind you that there is an associated shiny
app that accompanies this R
package. You can access
BayClump
directly from your browser using by clicking here. Now, let’s
go ahead and discuss some of the basic functions in
bayclumpr
.
library(bayclumpr)
bayclumpr
First, we will need some data to work with. We can use
bayclumpr
to generate simulated datasets with uncertainty
values described in Roman-Palacios et al. (2022). For this example, we
will simulate 50 observations under a low-eror scenario. Note
that the functions in bayclumpr
expect users to provide
uncertainty in terms of standard deviation. The resulting
dataset will be stored in the ds
object.
<- cal.dataset(error = "S1", nobs = 50)
ds head(ds)
#> x_TRUE Temperature TempError y_TRUE D47error D47 Material
#> 1 10.076133 10.089943 0.013809939 0.6475262 -0.0032283733 0.6442978 1
#> 2 11.414949 11.399569 -0.015379377 0.6841481 0.0065876134 0.6907357 1
#> 3 12.517576 12.522651 0.005074617 0.7430624 0.0012176807 0.7442800 1
#> 4 9.695736 9.662728 -0.033008011 0.6333012 0.0021347308 0.6354360 1
#> 5 12.391566 12.364749 -0.026817078 0.7379670 0.0027211068 0.7406881 1
#> 6 12.060248 12.051630 -0.008617473 0.7206252 0.0005650349 0.7211903 1
Now, let’s start by fitting different models in the simulated
dataset. For instance, let’s fit a Deming regression model using the
cal.deming
function in bayclumpr
:
cal.deming(data = ds, replicates = 10)
#> alpha beta
#> 1 0.2440497 0.03906877
#> 2 0.2614754 0.03670698
#> 3 0.2760968 0.03574009
#> 4 0.2419661 0.03857797
#> 5 0.2752911 0.03585697
#> 6 0.2526154 0.03764163
#> 7 0.2497403 0.03784485
#> 8 0.2505127 0.03785190
#> 9 0.2590315 0.03708834
#> 10 0.2057244 0.04158558
Alternatively, you can fit an unweighted or weighted OLS regression
using cal.ols
and cal.wols
functions,
respectively:
cal.ols(data = ds, replicates = 10)
#> alpha beta
#> 1 0.2839352 0.03554307
#> 2 0.2872762 0.03527608
#> 3 0.2733101 0.03642586
#> 4 0.2640842 0.03709674
#> 5 0.2652946 0.03701428
#> 6 0.2668595 0.03679151
#> 7 0.2660233 0.03687870
#> 8 0.2826984 0.03542715
#> 9 0.2693398 0.03663859
#> 10 0.2850873 0.03507551
cal.wols(data = ds, replicates = 10)
#> alpha beta
#> 1 0.2557905 0.03789321
#> 2 0.2734807 0.03632590
#> 3 0.2716440 0.03643221
#> 4 0.2711929 0.03621119
#> 5 0.2743809 0.03625556
#> 6 0.2716777 0.03629290
#> 7 0.2765445 0.03604140
#> 8 0.2747726 0.03619440
#> 9 0.2710448 0.03650991
#> 10 0.2699076 0.03685035
York regression models are also implemented in
bayclumpr
:
cal.york(data = ds, replicates = 10)
#> alpha beta
#> 1 0.2502012 0.03822585
#> 2 0.2417208 0.03889872
#> 3 0.2430982 0.03835195
#> 4 0.2689329 0.03625636
#> 5 0.2714125 0.03611063
#> 6 0.2638400 0.03685362
#> 7 0.2897728 0.03520313
#> 8 0.2755461 0.03600768
#> 9 0.2630668 0.03715828
#> 10 0.2678943 0.03654801
Finally, bayclumpr
implements three types of Bayesian
linear models that are used for calibrations and temperature
reconstructions. Let’s fit all three models using the
cal.bayesian
function:
<- cal.bayesian(calibrationData = ds, numSavedSteps = 3000, priors = "Weak", MC = FALSE)
BayesCal #>
#> SAMPLING FOR MODEL 'cc8e49c029f748bb6dab815288864757' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3.7e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.37 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 1: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 1: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 1: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 1: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 1: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 1: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 1: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 1: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 1: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 1: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 1: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.659879 seconds (Warm-up)
#> Chain 1: 0.652097 seconds (Sampling)
#> Chain 1: 1.31198 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'cc8e49c029f748bb6dab815288864757' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1.2e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 2: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 2: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 2: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 2: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 2: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 2: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 2: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 2: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 2: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 2: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 2: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.307348 seconds (Warm-up)
#> Chain 2: 0.57049 seconds (Sampling)
#> Chain 2: 0.877838 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL '7f9086b208f04841e16d509c43ea0782' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 3.2e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.32 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 1: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 1: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 1: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 1: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 1: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 1: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 1: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 1: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 1: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 1: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 1: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.351803 seconds (Warm-up)
#> Chain 1: 0.298689 seconds (Sampling)
#> Chain 1: 0.650492 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL '7f9086b208f04841e16d509c43ea0782' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1.1e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 2: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 2: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 2: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 2: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 2: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 2: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 2: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 2: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 2: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 2: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 2: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.364248 seconds (Warm-up)
#> Chain 2: 0.304855 seconds (Sampling)
#> Chain 2: 0.669103 seconds (Total)
#> Chain 2:
#>
#> SAMPLING FOR MODEL '006ab23433c79b9b7b0940468909174a' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 8.1e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.81 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 1: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 1: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 1: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 1: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 1: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 1: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 1: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 1: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 1: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 1: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 1: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.486321 seconds (Warm-up)
#> Chain 1: 0.34889 seconds (Sampling)
#> Chain 1: 0.835211 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL '006ab23433c79b9b7b0940468909174a' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 1.5e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 2500 [ 0%] (Warmup)
#> Chain 2: Iteration: 250 / 2500 [ 10%] (Warmup)
#> Chain 2: Iteration: 500 / 2500 [ 20%] (Warmup)
#> Chain 2: Iteration: 750 / 2500 [ 30%] (Warmup)
#> Chain 2: Iteration: 1000 / 2500 [ 40%] (Warmup)
#> Chain 2: Iteration: 1001 / 2500 [ 40%] (Sampling)
#> Chain 2: Iteration: 1250 / 2500 [ 50%] (Sampling)
#> Chain 2: Iteration: 1500 / 2500 [ 60%] (Sampling)
#> Chain 2: Iteration: 1750 / 2500 [ 70%] (Sampling)
#> Chain 2: Iteration: 2000 / 2500 [ 80%] (Sampling)
#> Chain 2: Iteration: 2250 / 2500 [ 90%] (Sampling)
#> Chain 2: Iteration: 2500 / 2500 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.450048 seconds (Warm-up)
#> Chain 2: 0.317475 seconds (Sampling)
#> Chain 2: 0.767523 seconds (Total)
#> Chain 2:
The results are here stored in the BayesCal
object and
corresponds to stan
objects summarizing posterior
distributions of the parameters:
BayesCal
bayclumpr
bayclumpr
implements two functions to perform
temperature reconstructions under frequentist (rec.clumped
)
and Bayesian frameworks (rec.bayesian
). Let’s review how
each of these functions work by generating a synthetic dataset for two
samples.
<- data.frame(Sample = paste("Sample", 1:9),
recData D47 = rep(c(0.6, 0.7, 0.8), 3),
D47error = c(rep(0.005,3), rep(0.01,3), rep(0.02,3)),
N = rep(2, 9),
Material = rep(1, 9))
As for the calibration step, bayclumpr
expects
uncertainty (D47error
) to be expressed in terms of standard
deviation. Note that the recData
object generated above
includes the smallest number of columns that are needed to perform
reconstructions in bayclumpr
.
From this point, we will need to either specify the distribution of
parameter estimates from the calibration step. For instance, let’s
assume that we were interested in reconstructing temperatures for our
recData
under an OLS model. First, we would have to run our
calibration analyses:
<- cal.ols(data = ds, replicates = 10) paramdist
From this point, we can use the rec.clumped
to
reconstruct temperatures based on the reconstruction dataset
(recData
argument) and the observed calibration object
(obCal
argument):
rec.clumped(recData = recData, obCal = paramdist)
#> Sample D47 D47error meanTemp error
#> 1 Sample 1 0.6 0.005 59.79108 2.509437
#> 2 Sample 2 0.7 0.005 18.30648 1.687880
#> 3 Sample 3 0.8 0.005 -10.74432 1.233827
#> 4 Sample 4 0.6 0.010 59.79108 4.962974
#> 5 Sample 5 0.7 0.010 18.30648 3.346772
#> 6 Sample 6 0.8 0.010 -10.74432 2.450411
#> 7 Sample 7 0.6 0.020 59.79108 9.710425
#> 8 Sample 8 0.7 0.020 18.30648 6.580837
#> 9 Sample 9 0.8 0.020 -10.74432 4.833432
The resulting object includes information from the template
reconstruction dataset but also information on the reconstructed
temperature and associated uncertainty (1 SD
). Let’s now
perform reconstructions but under a Bayesian framework. For this, we
will again need parameter estimates derived from the calibration step
(see the BayesCal
created above). We will perform
reconstructions under only a single of the Bayesian models equivalent to
the OLS but fit under a Bayesian framework
(BayesCal$BLM1_fit_NoErrors
).
<- rec.bayesian(calModel = BayesCal$BLM1_fit_NoErrors, recData = recData, iter = 1000, postcalsamples = 100, MC = FALSE)
PredsBay #>
#> SAMPLING FOR MODEL 'd9c8b77ff79c7cb5c71ff874a6d29fd0' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000118 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.18 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 1: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 1: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 1: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 1: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 1: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 1: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 1: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 1: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 1: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 1: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 1: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.803636 seconds (Warm-up)
#> Chain 1: 0.546431 seconds (Sampling)
#> Chain 1: 1.35007 seconds (Total)
#> Chain 1:
#>
#> SAMPLING FOR MODEL 'd9c8b77ff79c7cb5c71ff874a6d29fd0' NOW (CHAIN 2).
#> Chain 2:
#> Chain 2: Gradient evaluation took 6.5e-05 seconds
#> Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.65 seconds.
#> Chain 2: Adjust your expectations accordingly!
#> Chain 2:
#> Chain 2:
#> Chain 2: Iteration: 1 / 1000 [ 0%] (Warmup)
#> Chain 2: Iteration: 100 / 1000 [ 10%] (Warmup)
#> Chain 2: Iteration: 200 / 1000 [ 20%] (Warmup)
#> Chain 2: Iteration: 300 / 1000 [ 30%] (Warmup)
#> Chain 2: Iteration: 400 / 1000 [ 40%] (Warmup)
#> Chain 2: Iteration: 500 / 1000 [ 50%] (Warmup)
#> Chain 2: Iteration: 501 / 1000 [ 50%] (Sampling)
#> Chain 2: Iteration: 600 / 1000 [ 60%] (Sampling)
#> Chain 2: Iteration: 700 / 1000 [ 70%] (Sampling)
#> Chain 2: Iteration: 800 / 1000 [ 80%] (Sampling)
#> Chain 2: Iteration: 900 / 1000 [ 90%] (Sampling)
#> Chain 2: Iteration: 1000 / 1000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 0.662072 seconds (Warm-up)
#> Chain 2: 0.563868 seconds (Sampling)
#> Chain 2: 1.22594 seconds (Total)
#> Chain 2:
The associated reconstructions to this Bayesian model are shown below:
PredsBay#> Sample D47 D47error meanTemp error
#> 1 Sample 1 0.6 0.005 60.21022 0.7226459
#> 2 Sample 2 0.7 0.005 18.70703 0.4668382
#> 3 Sample 3 0.8 0.005 -10.36620 0.3430503
#> 4 Sample 4 0.6 0.010 60.19585 0.6755755
#> 5 Sample 5 0.7 0.010 18.69667 0.5170229
#> 6 Sample 6 0.8 0.010 -10.36899 0.3411882
#> 7 Sample 7 0.6 0.020 60.19985 0.7097546
#> 8 Sample 8 0.7 0.020 18.71255 0.4440080
#> 9 Sample 9 0.8 0.020 -10.37417 0.3605431
We have reviewed the most fundamental aspects of using
bayclumpr
. More advanced analyses involving alternative
priors in Bayesian models are an option to explore in upcoming releases
of the package.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.