The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(bellreg)
data(cells)
# ML approach:
mle <- zibellreg(cells ~ smoker+gender|smoker+gender, data = cells, approach = "mle")
summary(mle)
#> Call:
#> zibellreg(formula = cells ~ smoker + gender | smoker + gender,
#> data = cells, approach = "mle")
#>
#> Zero-inflated regression coefficients:
#> Estimate StdErr z.value p.value
#> (Intercept) -1.95230 0.84509 -2.3102 0.020878 *
#> smoker 2.17646 0.82330 2.6436 0.008203 **
#> gender -0.49579 0.42061 -1.1787 0.238503
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> Count regression coefficients:
#> Estimate StdErr z.value p.value
#> (Intercept) 0.716551 0.179860 3.9839 6.778e-05 ***
#> smoker -0.611777 0.183409 -3.3356 0.0008512 ***
#> gender 0.036389 0.177480 0.2050 0.8375493
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ---
#> logLik = -610.3234 AIC = 1232.647
# Bayesian approach:
bayes <- zibellreg(cells ~ 1|smoker+gender, data = cells, approach = "bayes", refresh = FALSE)
summary(bayes)
#> Call:
#> zibellreg(formula = cells ~ 1 | smoker + gender, data = cells,
#> approach = "bayes", refresh = FALSE)
#>
#> Zero-inflated regression coefficients:
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
#> (Intercept) -1.149 0.006 0.31 -1.848 -1.333 -1.119 -0.936 -0.634 2610.283
#> Rhat
#> (Intercept) 1.001
#>
#> Count regression coefficients:
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
#> (Intercept) 0.714 0.003 0.146 0.427 0.615 0.716 0.814 1.000 3029.991
#> smoker -1.066 0.003 0.145 -1.349 -1.163 -1.068 -0.971 -0.780 2303.155
#> gender 0.175 0.003 0.142 -0.100 0.078 0.176 0.272 0.457 2922.114
#> Rhat
#> (Intercept) 1.000
#> smoker 1.001
#> gender 1.000
#> ---
#> Inference for Stan model: zibellreg.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
log_lik <- loo::extract_log_lik(bayes$fit)
loo::loo(log_lik)
#> Warning: Some Pareto k diagnostic values are too high. See help('pareto-k-diagnostic') for details.
#>
#> Computed from 4000 by 511 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_loo -1032.6 50.5
#> p_loo 189.0 18.5
#> looic 2065.2 101.0
#> ------
#> MCSE of elpd_loo is NA.
#> MCSE and ESS estimates assume independent draws (r_eff=1).
#>
#> Pareto k diagnostic values:
#> Count Pct. Min. ESS
#> (-Inf, 0.7] (good) 419 82.0% 511
#> (0.7, 1] (bad) 70 13.7% <NA>
#> (1, Inf) (very bad) 22 4.3% <NA>
#> See help('pareto-k-diagnostic') for details.
loo::waic(log_lik)
#> Warning:
#> 93 (18.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
#>
#> Computed from 4000 by 511 log-likelihood matrix.
#>
#> Estimate SE
#> elpd_waic -994.0 47.2
#> p_waic 150.4 14.0
#> waic 1987.9 94.3
#>
#> 93 (18.2%) p_waic estimates greater than 0.4. We recommend trying loo instead.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.