The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

basic-use

Citation

Please cite as

Dan MacLean. (2019). TeamMacLean/besthr: Initial Release (0.3.0). Zenodo. https://doi.org/10.5281/zenodo.3374507

Simplest Use Case - Two Groups, No Replicates

With a data frame or similar object, use the estimate() function to get the bootstrap estimates of the ranked data.

estimate() has a basic function call as follows:

estimate(data, score_column_name, group_column_name, control = control_group_name)

The first argument after the

library(besthr)

hr_data_1_file <- system.file("extdata", "example-data-1.csv", package = "besthr")
hr_data_1 <- readr::read_csv(hr_data_1_file)
#> Rows: 20 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): group
#> dbl (1): score
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(hr_data_1)
#> # A tibble: 6 × 2
#>   score group
#>   <dbl> <chr>
#> 1    10 A    
#> 2     9 A    
#> 3    10 A    
#> 4    10 A    
#> 5     8 A    
#> 6     8 A

hr_est_1 <- estimate(hr_data_1, score, group, control = "A")
hr_est_1
#> besthr (HR Rank Score Analysis with Bootstrap Estimation)
#> =========================================================
#> 
#> Control: A
#> 
#> Unpaired mean rank difference of A (14.9, n=10) minus B (6.1, n=10)
#>  8.8
#> Confidence Intervals (0.025, 0.975)
#>  3.9425, 8.5125
#> 
#> 100 bootstrap resamples.

plot(hr_est_1)
#> Picking joint bandwidth of 0.401

Setting Options

You may select the group to set as the common reference control with control.

estimate(hr_data_1, score, group, control = "B" ) %>%
  plot()
#> Picking joint bandwidth of 0.388

You may select the number of iterations of the bootstrap to perform with nits and the quantiles for the confidence interval with low and high.

estimate(hr_data_1, score, group, control = "A", nits = 1000, low = 0.4, high = 0.6) %>%
  plot()
#> Picking joint bandwidth of 0.262

Extended Use Case - Technical Replicates

You can extend the estimate() options to specify a third column in the data that contains technical replicate information, add the technical replicate column name after the sample column. Technical replicates are automatically merged using the mean() function before ranking.


hr_data_3_file <- system.file("extdata", "example-data-3.csv", package = "besthr")
hr_data_3 <- readr::read_csv(hr_data_3_file)
#> Rows: 36 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): sample
#> dbl (2): score, rep
#> 
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(hr_data_3)
#> # A tibble: 6 × 3
#>   score sample   rep
#>   <dbl> <chr>  <dbl>
#> 1     8 A          1
#> 2     9 A          1
#> 3     8 A          1
#> 4    10 A          1
#> 5     8 A          2
#> 6     8 A          2

hr_est_3 <- estimate(hr_data_3, score, sample, rep, control = "A")

hr_est_3
#> besthr (HR Rank Score Analysis with Bootstrap Estimation)
#> =========================================================
#> 
#> Control: A
#> 
#> Unpaired mean rank difference of A (5, n=3) minus B (2, n=3)
#>  3
#> Confidence Intervals (0.025, 0.975)
#>  1, 3
#> 
#> Unpaired mean rank difference of A (5, n=3) minus C (8, n=3)
#>  -3
#> Confidence Intervals (0.025, 0.975)
#>  7.33333333333333, 8.84166666666666
#> 
#> 100 bootstrap resamples.

plot(hr_est_3)
#> Picking joint bandwidth of 0.17

Alternate Plot Options

In the case where you have use technical replicates and want to see those plotted you can use an extra plot option which. Set which to just_data if you wish the left panel of the plot to show all data without ranking. This will only work if you have technical replicates.


hr_est_3 %>% 
  plot(which = "just_data")
#> Picking joint bandwidth of 0.17

Styling Plots

You can style plots to your own taste. The object returned from plot() is a patchwork https://patchwork.data-imaginist.com/ object that composes two separate plots, the dot plot and the bootstrap percentile plot, which are themselves ggplot objects. So you can use a mixture of patchwork annotations functions for whole plot labels and ggplot themes for individual elements.

Adding annotations.

You can use the patchwork plot_annotation() function to add titles

library(patchwork)

p <- plot(hr_est_1)

p + plot_annotation(title = 'A stylish besthr plot', 
                    subtitle = "better than ever", 
                    caption = 'Though this example is not meaningful')
#> Picking joint bandwidth of 0.401

p
#> Picking joint bandwidth of 0.401

Targetting a subplot to make theme changes

You can change the style of the individual plot elements using subsetting syntax [[]] . The dot plot can be addressed within the patchwork object using index 1 within the patchwork object p[[1]], and the percentile plot using p[[2]]. You must add to the existing subplot then assign the result back to see the difference in the plot. Here’s an example that uses theme() to restyle the y-axis text of the dot plot

library(ggplot2)
p[[1]] <- p[[1]] + theme(axis.title.y = element_text(family = "Times", colour="blue", size=24))
p
#> Picking joint bandwidth of 0.401

Changing the scale colours of a subplot

You can change the colours used by the scales in the same way using the scale functions, though as the type of scale is different for the dot plot and bootstrap plot you will need to apply a different scale for each.

For the dot plot, use a discrete scale e.g scale_colour_manual(), scale_colour_viridis_d() or scale_colour_brewer(type = "qual")

p[[1]] <- p[[1]] + scale_colour_manual(values = c("blue", "#440000"))
p
#> Picking joint bandwidth of 0.401


p[[1]] <- p[[1]] + scale_colour_viridis_d()
#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.
p
#> Picking joint bandwidth of 0.401


p[[1]] <- p[[1]] + scale_colour_brewer(type="qual", palette="Accent")
#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.
p
#> Picking joint bandwidth of 0.401

For the percentile plot, use only scale_colour_manual() with specified colours. Annoyingly, this rewrites the other values associated with the scale each time, so you’ll need to replace those.

p[[2]] <- p[[2]] + scale_fill_manual(
  values = c("blue", "pink", "yellow"),
  name = "bootstrap percentile", labels=c("lower", "non-significant", "higher"),
  guide = guide_legend(reverse=TRUE)
  )
#> Scale for fill is already present.
#> Adding another scale for fill, which will replace the existing scale.
p
#> Picking joint bandwidth of 0.401

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.