The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Please cite as
Dan MacLean. (2019). TeamMacLean/besthr: Initial Release (0.3.0). Zenodo. https://doi.org/10.5281/zenodo.3374507
With a data frame or similar object, use the estimate()
function to get the bootstrap estimates of the ranked data.
estimate()
has a basic function call as follows:
estimate(data, score_column_name, group_column_name, control = control_group_name)
The first argument after the
library(besthr)
<- system.file("extdata", "example-data-1.csv", package = "besthr")
hr_data_1_file <- readr::read_csv(hr_data_1_file)
hr_data_1 #> Rows: 20 Columns: 2
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): group
#> dbl (1): score
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(hr_data_1)
#> # A tibble: 6 × 2
#> score group
#> <dbl> <chr>
#> 1 10 A
#> 2 9 A
#> 3 10 A
#> 4 10 A
#> 5 8 A
#> 6 8 A
<- estimate(hr_data_1, score, group, control = "A")
hr_est_1
hr_est_1#> besthr (HR Rank Score Analysis with Bootstrap Estimation)
#> =========================================================
#>
#> Control: A
#>
#> Unpaired mean rank difference of A (14.9, n=10) minus B (6.1, n=10)
#> 8.8
#> Confidence Intervals (0.025, 0.975)
#> 3.9425, 8.5125
#>
#> 100 bootstrap resamples.
plot(hr_est_1)
#> Picking joint bandwidth of 0.401
You may select the group to set as the common reference control with
control
.
estimate(hr_data_1, score, group, control = "B" ) %>%
plot()
#> Picking joint bandwidth of 0.388
You may select the number of iterations of the bootstrap to perform
with nits
and the quantiles for the confidence interval
with low
and high
.
estimate(hr_data_1, score, group, control = "A", nits = 1000, low = 0.4, high = 0.6) %>%
plot()
#> Picking joint bandwidth of 0.262
You can extend the estimate()
options to specify a third
column in the data that contains technical replicate information, add
the technical replicate column name after the sample column. Technical
replicates are automatically merged using the mean()
function before ranking.
<- system.file("extdata", "example-data-3.csv", package = "besthr")
hr_data_3_file <- readr::read_csv(hr_data_3_file)
hr_data_3 #> Rows: 36 Columns: 3
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (1): sample
#> dbl (2): score, rep
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(hr_data_3)
#> # A tibble: 6 × 3
#> score sample rep
#> <dbl> <chr> <dbl>
#> 1 8 A 1
#> 2 9 A 1
#> 3 8 A 1
#> 4 10 A 1
#> 5 8 A 2
#> 6 8 A 2
<- estimate(hr_data_3, score, sample, rep, control = "A")
hr_est_3
hr_est_3#> besthr (HR Rank Score Analysis with Bootstrap Estimation)
#> =========================================================
#>
#> Control: A
#>
#> Unpaired mean rank difference of A (5, n=3) minus B (2, n=3)
#> 3
#> Confidence Intervals (0.025, 0.975)
#> 1, 3
#>
#> Unpaired mean rank difference of A (5, n=3) minus C (8, n=3)
#> -3
#> Confidence Intervals (0.025, 0.975)
#> 7.33333333333333, 8.84166666666666
#>
#> 100 bootstrap resamples.
plot(hr_est_3)
#> Picking joint bandwidth of 0.17
In the case where you have use technical replicates and want to see
those plotted you can use an extra plot option which
. Set
which
to just_data
if you wish the left panel
of the plot to show all data without ranking. This will only work if you
have technical replicates.
%>%
hr_est_3 plot(which = "just_data")
#> Picking joint bandwidth of 0.17
You can style plots to your own taste. The object returned from
plot()
is a patchwork
https://patchwork.data-imaginist.com/
object that composes two separate plots, the dot plot and the bootstrap
percentile plot, which are themselves ggplot
objects. So
you can use a mixture of patchwork
annotations functions
for whole plot labels and ggplot
themes for individual
elements.
You can use the patchwork
plot_annotation()
function to add titles
library(patchwork)
<- plot(hr_est_1)
p
+ plot_annotation(title = 'A stylish besthr plot',
p subtitle = "better than ever",
caption = 'Though this example is not meaningful')
#> Picking joint bandwidth of 0.401
p#> Picking joint bandwidth of 0.401
You can change the style of the individual plot elements using
subsetting syntax [[]]
. The dot plot can be addressed
within the patchwork
object using index 1 within the
patchwork
object p[[1]]
, and the percentile
plot using p[[2]]
. You must add to the existing subplot
then assign the result back to see the difference in the plot. Here’s an
example that uses theme()
to restyle the y-axis text of the
dot plot
library(ggplot2)
1]] <- p[[1]] + theme(axis.title.y = element_text(family = "Times", colour="blue", size=24))
p[[
p#> Picking joint bandwidth of 0.401
You can change the colours used by the scales in the same way using
the scale
functions, though as the type of scale is
different for the dot plot and bootstrap plot you will need to apply a
different scale for each.
For the dot plot, use a discrete scale e.g
scale_colour_manual()
,
scale_colour_viridis_d()
or
scale_colour_brewer(type = "qual")
1]] <- p[[1]] + scale_colour_manual(values = c("blue", "#440000"))
p[[
p#> Picking joint bandwidth of 0.401
1]] <- p[[1]] + scale_colour_viridis_d()
p[[#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.
p#> Picking joint bandwidth of 0.401
1]] <- p[[1]] + scale_colour_brewer(type="qual", palette="Accent")
p[[#> Scale for colour is already present.
#> Adding another scale for colour, which will replace the existing scale.
p#> Picking joint bandwidth of 0.401
For the percentile plot, use only scale_colour_manual()
with specified colours. Annoyingly, this rewrites the other values
associated with the scale each time, so you’ll need to replace
those.
2]] <- p[[2]] + scale_fill_manual(
p[[values = c("blue", "pink", "yellow"),
name = "bootstrap percentile", labels=c("lower", "non-significant", "higher"),
guide = guide_legend(reverse=TRUE)
)#> Scale for fill is already present.
#> Adding another scale for fill, which will replace the existing scale.
p#> Picking joint bandwidth of 0.401
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.