The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Enjoy this brief demonstration of the predict metric module
First, we steal Field’s (2017) dancing cat example (please see Cats.R)
# Define data
<- bfw::Cats
data # Aggregate data
<- stats::aggregate(list(Ratings = data$Ratings),
aggregate.data by=list(Reward = data$Reward ,
Dance = data$Dance ,
Alignment = data$Alignment),
FUN=function(x) c(Mean = mean(x), SD = sd(x)))
# Describe data
<- psych::describe(data)[,c(2:5,10:12)]
describe.data
describe.data#> n mean sd median range skew kurtosis
#> Reward* 2000 1.81 0.39 2.00 1 -1.58 0.49
#> Dance* 2000 1.38 0.49 1.00 1 0.49 -1.76
#> Alignment* 2000 1.35 0.48 1.00 1 0.63 -1.61
#> Ratings 2000 3.37 1.92 2.69 6 0.38 -1.40
# Print data
print(aggregate.data, digits = 3)
#> Reward Dance Alignment Ratings.Mean Ratings.SD
#> 1 Food No Evil 5.078 0.991
#> 2 Affection No Evil 1.785 0.602
#> 3 Food Yes Evil 4.887 0.925
#> 4 Affection Yes Evil 1.692 0.604
#> 5 Food No Good 3.789 0.934
#> 6 Affection No Good 5.528 0.857
#> 7 Food Yes Good 3.898 1.097
#> 8 Affection Yes Good 5.734 0.809
# Use the three categorical variables and mixed contrast.
<- bfw::bfw(project.data = data,
mcmc y = "Ratings",
x = "Reward,Dance,Alignment",
saved.steps = 50000,
jags.model = "metric",
run.contrasts = TRUE,
use.contrast = "mixed",
contrasts = "1,2,3",
jags.seed = 100,
silent = TRUE)
# ... and just show the most likely parameter estimate of effect sizes.
round(normal$summary.MCMC[grep("Effect size:",
rownames(normal$summary.MCMC)), c(2,5:7)],3)
# Median HDIlo HDIhi n
# Effect size: Food/Affection -0.832 -0.992 -0.667 2000
# Effect size: No/Yes -0.012 -0.163 0.148 2000
# Effect size: Evil/Good -1.600 -1.775 -1.419 2000
# Effect size: Food/Affection @ No -0.893 -1.151 -0.632 1240
# Effect size: Food vs. No/Yes -0.079 -0.248 0.100 380
# Effect size: Food/Affection vs. No/Yes -0.830 -1.015 -0.650 2000
# Effect size: Affection/Food vs. No/Yes 0.836 0.571 1.110 2000
# Effect size: Affection vs. No/Yes 0.035 -0.194 0.274 1620
# Effect size: Food/Affection @ Yes -0.773 -0.968 -0.582 760
# Effect size: Food/Affection @ Evil -4.007 -4.458 -3.541 1299
# Effect size: Food vs. Evil/Good -5.320 -5.696 -4.952 380
# Effect size: Food/Affection vs. Evil/Good -2.500 -2.811 -2.186 2000
# Effect size: Affection/Food vs. Evil/Good -0.725 -0.940 -0.506 2000
# Effect size: Affection vs. Evil/Good 1.134 0.882 1.393 1620
# Effect size: Food/Affection @ Good 1.911 1.663 2.154 701
# Effect size: No/Yes @ Evil 0.168 -0.082 0.401 1299
# Effect size: No vs. Evil/Good -1.445 -1.712 -1.169 1240
# Effect size: No/Yes vs. Evil/Good -1.573 -1.831 -1.323 2000
# Effect size: Yes/No vs. Evil/Good -1.631 -1.878 -1.380 2000
# Effect size: Yes vs. Evil/Good -1.752 -1.974 -1.532 760
# Effect size: No/Yes @ Good -0.164 -0.357 0.033 701
# Effect size: Food/Affection @ No @ Evil -3.971 -4.708 -3.192 1063
# Effect size: Food vs. No/Yes @ Evil 0.147 -0.148 0.442 230
# Effect size: Food/Affection vs. No/Yes @ Evil -3.969 -4.301 -3.634 1299
# Effect size: Food @ No vs. Evil/Good -5.040 -5.530 -4.549 100
# Effect size: Food/Affection @ No vs. Evil/Good -2.543 -2.964 -2.095 1240
# Effect size: Food vs. No/Yes vs. Evil/Good -5.530 -5.811 -5.253 380
# Effect size: Food/Affection vs. No/Yes vs. Evil/Good -2.381 -2.734 -1.999 2000
# Effect size: Affection/Food vs. No/Yes @ Evil 4.049 3.216 4.892 1299
# Effect size: Affection vs. No/Yes @ Evil 0.181 -0.153 0.508 1069
# Effect size: Affection/Food @ No vs. Evil/Good -0.499 -0.879 -0.135 1240
# Effect size: Affection @ No vs. Evil/Good 1.301 0.888 1.735 1140
# Effect size: Affection/Food vs. No/Yes vs. Evil/Good -0.735 -1.073 -0.376 2000
# Effect size: Affection vs. No/Yes vs. Evil/Good 1.103 0.709 1.494 1620
# Effect size: Food/Affection @ Yes @ Evil -4.059 -4.539 -3.586 236
# Effect size: Food vs. Yes/No vs. Evil/Good -5.120 -5.792 -4.475 380
# Effect size: Food/Affection vs. Yes/No vs. Evil/Good -2.636 -3.147 -2.119 2000
# Effect size: Food @ Yes vs. Evil/Good -5.624 -6.197 -5.065 280
# Effect size: Food/Affection @ Yes vs. Evil/Good -2.468 -2.913 -2.031 760
# Effect size: Affection/Food vs. Yes/No vs. Evil/Good -0.718 -0.944 -0.482 2000
# Effect size: Affection vs. Yes/No vs. Evil/Good 1.171 0.865 1.479 1620
# Effect size: Affection/Food @ Yes vs. Evil/Good -0.970 -1.157 -0.788 760
# Effect size: Affection @ Yes vs. Evil/Good 0.972 0.699 1.230 480
# Effect size: Food/Affection @ No @ Good 1.923 1.554 2.297 177
# Effect size: Food vs. No/Yes @ Good -0.242 -0.446 -0.036 150
# Effect size: Food/Affection vs. No/Yes @ Good 1.649 1.317 1.971 701
# Effect size: Affection/Food vs. No/Yes @ Good -2.209 -2.565 -1.843 701
# Effect size: Affection vs. No/Yes @ Good -0.102 -0.402 0.200 551
# Effect size: Food/Affection @ Yes @ Good 1.899 1.586 2.196 524
Let’s try to break it down. For instance, the effect size is an approximation of Cohen’s d. Now, if we take a look at Effect size: Food/Affection vs. No/Yes vs. Evil/Good, it clearly indicate a large, negative effect of some sort. From the aggregate table at the beginning of the vignette, we can try to interpret the result.
# Let's print the aggregate table again.
print(aggregate.data, digits = 3)
#> Reward Dance Alignment Ratings.Mean Ratings.SD
#> 1 Food No Evil 5.078 0.991
#> 2 Affection No Evil 1.785 0.602
#> 3 Food Yes Evil 4.887 0.925
#> 4 Affection Yes Evil 1.692 0.604
#> 5 Food No Good 3.789 0.934
#> 6 Affection No Good 5.528 0.857
#> 7 Food Yes Good 3.898 1.097
#> 8 Affection Yes Good 5.734 0.809
First, we can see that regardless of whether the evil cats dance or not, they prefer food (M = 4.98) as reward over affection (M = 1.73). Second we can see that good cats prefer affection (M = 5.63) over food (M = 2.43). Furthermore, we can also infer that evil cats that dance (M = 2.02) rate their owners about the same as evil cats that do not dance (M = 2.11). Good cats, similarly have fairly equal ratings regardless of whether they dance (M = 2.88) or not (M = 2.77). Finally, evil cats (M = 2.07) rate their owners somewhat lower than good cats (M = 2.83), as seen by Effect size: Evil/Good = -1.60.
From the results we can claim that evil cats, in general, rate their owners higher if they get food rather than affection (d = -4.01), and that the opposite is true for good cats (d = -1.91).
Please note that by conducting mixed contrasts results will include both between and within contrasts, in addition to any possible combination (including ones that does not necessarily give any meaning).
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.