The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
bigPLSR now provides two complementary bootstrap
procedures:
Both approaches expose percentile and BCa confidence intervals, numerical summaries and plotting helpers.
We rely on a small multivariate example to illustrate the workflow.
boot_xy <- pls_bootstrap(X, Y, ncomp = 3, R = 50, type = "xy",
parallel = "none", return_scores = TRUE)
head(summarise_pls_bootstrap(boot_xy))
#> variable response mean sd percentile_lower percentile_upper
#> 1 X1 Y1 1.12720380 0.05483111 1.03357126 1.22790239
#> 2 X2 Y1 0.31715126 0.07184301 0.16076652 0.43387511
#> 3 X3 Y1 -0.58032760 0.07402063 -0.71756064 -0.44816272
#> 4 X4 Y1 0.01629040 0.07403399 -0.13117394 0.11615478
#> 5 X5 Y1 0.03428052 0.08010332 -0.09078452 0.17987746
#> 6 X6 Y1 -0.02468821 0.05931838 -0.14013792 0.07848342
#> bca_lower bca_upper
#> 1 1.07662505 1.2870309
#> 2 0.11687183 0.4120490
#> 3 -0.71386459 -0.3935652
#> 4 -0.18829055 0.1576646
#> 5 -0.09981499 0.3233262
#> 6 -0.14153533 0.0540529A quick visual inspection of the coefficient distributions:
The conditional bootstrap operates on the latent score representation extracted from the baseline fit.
boot_xt <- pls_bootstrap(X, Y, ncomp = 3, R = 50, type = "xt",
parallel = "none", return_scores = TRUE)
head(summarise_pls_bootstrap(boot_xt))
#> variable response mean sd percentile_lower percentile_upper
#> 1 X1 eta1 1.14632807 0.04497402 1.0672858 1.216945852
#> 2 X2 eta1 0.31388701 0.03309151 0.2577740 0.376551867
#> 3 X3 eta1 -0.57958235 0.02422587 -0.6339318 -0.539038171
#> 4 X4 eta1 0.01363128 0.03222957 -0.0448380 0.069097207
#> 5 X5 eta1 0.01377627 0.03246635 -0.0569404 0.072171472
#> 6 X6 eta1 -0.04337170 0.02979694 -0.1021070 -0.004940322
#> bca_lower bca_upper
#> 1 1.06165429 1.22675518
#> 2 0.25417756 0.38356573
#> 3 -0.62915894 -0.51626603
#> 4 -0.05084027 0.07010002
#> 5 -0.03361595 0.07498808
#> 6 -0.12270539 0.02059054When return_scores = TRUE, the bootstrap result stores
the score matrices for each replicate. This allows for custom
diagnostics such as the dispersion of the first two latent
variables:
score_mats <- boot_xt$score_samples
score_means <- sapply(score_mats, function(M) colMeans(M)[1:2])
apply(score_means, 1, summary)
#> [,1] [,2]
#> Min. -0.023265400 -0.0177317599
#> 1st Qu. -0.010183238 -0.0067989105
#> Median -0.002768175 -0.0013845304
#> Mean -0.002329194 -0.0006864936
#> 3rd Qu. 0.004474621 0.0059661965
#> Max. 0.021550597 0.0225250130You can feed individual score matrices into
plot_pls_individuals() to overlay confidence ellipses
obtained from the bootstrap draws.
Both bootstrap flavours honour the parallel = "future"
option. Configure your preferred plan before calling the helper:
Use the two bootstrap strategies to quantify the uncertainty of your PLS models. The (X, Y) variant mirrors the classic non-parametric bootstrap while the (X, T) option keeps the latent structure fixed for computational efficiency. The supplied summaries and plotting helpers provide starting points for more elaborate diagnostic workflows.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.