The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Overview of bigPLScox

Frédéric Bertrand

Cedric, Cnam, Paris
frederic.bertrand@lecnam.net

2025-11-06

Introduction

The goal of bigPLScox is to provide Partial Least Squares (PLS) variants of the Cox proportional hazards model that scale to high-dimensional survival settings. The package implements several algorithms tailored for large-scale problems, including sparse, grouped, and deviance-residual-based approaches. It integrates with the bigmemory ecosystem so that data stored on disk can be analysed without exhausting RAM.

This vignette gives a quick tour of the core workflows. It highlights how to prepare data, fit a model, assess model quality, and explore advanced extensions. The complementary vignette “Getting started with bigPLScox” offers a more hands-on tutorial, while “Benchmarking bigPLScox” focuses on performance comparisons.

Package highlights

Available algorithms

The following modeling functions are provided:

For stochastic gradient descent on large data the package includes big_pls_cox() and big_pls_cox_gd().

Loading an example dataset

The package ships with a small allelotyping dataset that we use throughout this vignette. The data include censoring indicators alongside a large set of predictors.

library(bigPLScox)

data(micro.censure)
data(Xmicro.censure_compl_imp)

train_idx <- seq_len(80)
Y_train <- micro.censure$survyear[train_idx]
C_train <- micro.censure$DC[train_idx]
X_train <- Xmicro.censure_compl_imp[train_idx, -40]

Fitting a PLS-Cox model

coxgpls() provides a matrix interface that mirrors survival::coxph() but adds latent components to stabilise estimation in high dimensions.

fit <- coxgpls(
  X_train,
  Y_train,
  C_train,
  ncomp = 6,
  ind.block.x = c(3, 10, 15)
)
fit
#> Call:
#> coxph(formula = YCsurv ~ ., data = tt_gpls)
#> 
#>          coef exp(coef) se(coef)      z       p
#> dim.1 -0.6003    0.5486   0.2197 -2.733 0.00628
#> dim.2 -0.6876    0.5028   0.2816 -2.442 0.01460
#> dim.3 -0.4922    0.6113   0.2498 -1.971 0.04877
#> dim.4  0.2393    1.2703   0.2861  0.836 0.40292
#> dim.5 -0.3689    0.6915   0.2200 -1.677 0.09359
#> dim.6  0.1570    1.1700   0.2763  0.568 0.56979
#> 
#> Likelihood ratio test=23.99  on 6 df, p=0.0005249
#> n= 80, number of events= 17

The summary includes convergence diagnostics, latent component information, and predicted linear predictors that can be used for risk stratification.

Model assessment

Cross-validation helps decide how many components should be retained. The cv.coxgpls() helper accepts either a matrix or a list containing x, time, and status elements.

set.seed(123)
cv_res <- cv.coxgpls(
  list(x = X_train, time = Y_train, status = C_train),
  nt = 10,
  ind.block.x = c(3, 10, 15)
)
#> CV Fold 1
#> CV Fold 2
#> CV Fold 3
#> CV Fold 4
#> CV Fold 5

cv_res
#> $nt
#> [1] 10
#> 
#> $cv.error10
#>  [1] 0.5000000 0.6013049 0.5183694 0.4226056 0.3860331 0.4071207 0.4252845
#>  [8] 0.4001223 0.4464093 0.4526887 0.4695600
#> 
#> $cv.se10
#>  [1] 0.00000000 0.03487588 0.06866706 0.07717020 0.07373734 0.07084802
#>  [7] 0.07707939 0.07247893 0.07317843 0.06341118 0.06252387
#> 
#> $folds
#> $folds$`1`
#>  [1] 31 42 69 75 72 12 66 27 71 55 58 49 11 30 37 22
#> 
#> $folds$`2`
#>  [1] 79 50 57 68 17 15 64 74 34 13 80 76 61  2 24 35
#> 
#> $folds$`3`
#>  [1] 51 43  9 62 73 32 41 78 29 18  6 16 44 59 33 48
#> 
#> $folds$`4`
#>  [1] 14 77 26 19 39 65 10 56  5  1 21 20 46 60  3 47
#> 
#> $folds$`5`
#>  [1] 67 25  7 36 53 45 23 38  8 40 54 28 52  4 70 63
#> 
#> 
#> $lambda.min10
#> [1] 1
#> 
#> $lambda.1se10
#> [1] 0

The resulting object may be plotted to visualise the cross-validated deviance or to apply one-standard-error rules when choosing the number of components.

Alternative estimators

Deviance-residual-based estimators provide increased robustness by iteratively updating residuals. Sparse variants enable feature selection in extremely high-dimensional designs.

dr_fit <- coxgplsDR(
  X_train,
  Y_train,
  C_train,
  ncomp = 6,
  ind.block.x = c(3, 10, 15)
)
dr_fit
#> Call:
#> coxph(formula = YCsurv ~ ., data = tt_gplsDR)
#> 
#>          coef exp(coef) se(coef)     z        p
#> dim.1 0.92699   2.52690  0.23301 3.978 6.94e-05
#> dim.2 0.85445   2.35008  0.27352 3.124  0.00178
#> dim.3 0.56308   1.75607  0.29847 1.887  0.05922
#> dim.4 0.49242   1.63627  0.32344 1.522  0.12789
#> dim.5 0.18706   1.20569  0.38769 0.482  0.62946
#> dim.6 0.08581   1.08960  0.31517 0.272  0.78541
#> 
#> Likelihood ratio test=51.46  on 6 df, p=2.39e-09
#> n= 80, number of events= 17

Additional sparse estimators can be invoked via coxsgpls() and coxspls_sgpls() by providing keepX or penalty arguments that control the number of active predictors per component.

Working with big data

For extremely large problems, stochastic gradient descent routines operate on memory-mapped matrices created with bigmemory. The helper below converts a standard matrix to a big.matrix and runs a small example.

X_big <- bigmemory::as.big.matrix(X_train)
big_fit <- big_pls_cox(
  X_big,
  time = Y_train,
  status = C_train,
  ncomp = 6
)
big_fit
#> $scores
#>              [,1]        [,2]        [,3]        [,4]        [,5]         [,6]
#>  [1,] -1.67104396 -1.31172970 -0.72053662  0.83758976  0.91523072  2.160972278
#>  [2,]  0.56500329 -2.40102720  1.39614422 -1.87960603 -0.09136061 -0.140687791
#>  [3,]  1.40616746 -0.69684421 -0.56989372 -0.01622647  0.68615313  0.063343145
#>  [4,]  0.58059459  0.14365512 -0.61241544 -2.57730299 -2.32512426 -1.229253581
#>  [5,]  1.42739124  0.02170243 -1.32960235  0.37746910 -1.98097619  1.172392190
#>  [6,] -1.16078731 -0.29961777 -0.22980325  0.21542915 -1.95714711 -1.283204950
#>  [7,] -1.23408322  1.33664160 -1.13549725 -0.12484523  0.20378409  1.580074806
#>  [8,]  2.94332576  0.70819715 -1.98537686 -0.15638169  0.44251820  2.001849745
#>  [9,]  0.02095444 -1.59587258 -0.68434695 -0.95788332  1.90956368 -0.964636074
#> [10,]  0.44524202 -0.96282654  2.47845180 -1.20488166 -1.04036886  1.367535052
#> [11,]  1.08512904  2.24438250 -0.38213400  0.99903346  0.58525310  3.015329777
#> [12,] -2.18125464  1.91284717 -0.28489813  1.73065024 -0.35121927 -0.198850021
#> [13,]  1.07471369 -1.43046906  0.44396702  0.85898313  1.12045349 -0.252855432
#> [14,] -1.61754215  0.88498067  0.30785096  0.77080467  0.73804337  0.443605286
#> [15,]  0.51720528 -0.94643073 -0.62399871  0.33306055  1.83769338 -0.871459432
#> [16,]  1.10085291 -1.78211236 -0.88393696  0.75099254 -0.78588660  1.584139906
#> [17,] -1.83313725 -0.43256798  0.30572026 -1.12545641 -0.19026054 -0.933739972
#> [18,] -1.94290640 -1.00042674 -0.54259313 -1.51321193 -0.16046741  1.346004692
#> [19,]  0.75005248  1.97644125 -0.63694082 -1.29752973  1.82426107 -2.266834083
#> [20,] -2.09144564  1.30983114 -0.77015689  0.30595855  1.02851410  0.391115096
#> [21,] -1.06832948 -1.79812101  1.31156771  0.23309168 -1.16799488  1.820129278
#> [22,] -0.72732728 -1.34943171  0.55404315  2.58015129  1.06548427  0.746357538
#> [23,]  0.68659962 -1.36226471  1.24958039 -0.21141390  1.32707245 -0.001936979
#> [24,]  0.64051825  0.86972749 -1.21949736  0.48197056 -1.15268954 -0.015782803
#> [25,] -3.16258865 -0.50120469 -1.44150348  1.16691956  0.34950903  0.095722045
#> [26,] -2.02253736  1.32415711  0.43825053 -0.91636530 -0.70489654 -0.110385401
#> [27,]  2.39611609  0.43308037  1.09930800  0.38042152 -0.38837697 -1.625543025
#> [28,]  1.79414318 -0.68043226 -2.08114620  0.53616832 -0.28912628 -2.437613030
#> [29,] -0.69653042  0.66341885  1.19836212 -0.87214101 -0.25326952 -3.355545199
#> [30,] -1.97105992  0.41749686  0.14848010 -1.64840958 -3.00195750 -0.439326986
#> [31,]  1.44730927 -0.03883362  1.96930809  2.91946177  1.09629507 -0.299438344
#> [32,] -1.87035902 -1.29281036  0.97050183  1.05646189 -0.41798590  1.262166994
#> [33,] -1.56262929 -1.61071056  1.91396985  0.68380944  1.16192551 -1.371079842
#> [34,] -0.30070481  1.89420490 -0.86002360 -0.93884533  2.11317196 -0.498123661
#> [35,]  1.94052729 -0.12396776 -0.50982180  2.64135497 -0.80210456 -0.757224864
#> [36,] -0.27646381  0.69498270 -0.70971117 -0.33712477  1.13985912 -0.200776009
#> [37,]  1.95839370  2.61494070  0.99400283  0.92655149 -1.80758389 -0.791362282
#> [38,] -1.19623313  1.71199889  1.69254301  1.51103508 -0.13841204 -0.954233914
#> [39,] -2.14893811 -0.42781160  0.79385084  0.40756776 -0.54150003  0.400999382
#> [40,]  0.47443255 -0.71831580  0.04438998  3.25520128  0.12572674 -0.760080990
#> [41,]  0.01038579  1.22634502  1.69247318 -0.01357900 -0.27652801 -1.539936107
#> [42,]  1.79481463 -0.92793623 -1.04005922  0.44122807  0.92921845  2.020257084
#> [43,] -2.01813391  1.06926582  2.30854724  1.73407299 -0.49604293  0.597531041
#> [44,] -0.40610435 -1.69036910  1.94673689  2.01313682 -0.98945192 -1.842766686
#> [45,] -1.15159486  0.79189839 -0.43274270 -1.99462095  1.05097661 -0.579690469
#> [46,]  0.12679724  0.57320104 -1.17330366  1.05916075 -2.70102967  1.830534303
#> [47,] -0.51382960 -1.52544274 -1.65552499 -1.58066193 -1.18635866 -0.005129010
#> [48,]  0.87538342 -1.20599642 -0.27385427 -3.14261822 -2.99232392 -1.194081029
#> [49,]  1.70751237 -0.42660178  0.97017036  1.51612272 -0.49242951  2.238275129
#> [50,] -0.08983474  0.13372715 -0.67666662 -2.00065278  1.06804125  2.219072130
#> [51,] -0.44112040  0.59609280  0.20012549 -2.31915979 -0.22759828 -0.640216836
#> [52,]  2.78002915 -4.25608264  0.29160756  0.16571098 -0.08539776 -0.540835490
#> [53,]  0.62370168 -1.02971836  0.21047586  0.52677910  1.36208648 -2.326641364
#> [54,]  1.99451623  2.01299517  3.85797376 -1.38049960 -1.40722400  0.810774141
#> [55,]  2.73032710  0.42244879  1.67364450 -0.93013251  0.11375487  0.605049105
#> [56,] -1.65794714 -0.52989444 -0.04189889 -0.05063020 -0.09582023  0.332710012
#> [57,] -2.73704777 -0.56825143 -0.24354962 -0.24131501  1.55048560  0.957924363
#> [58,] -0.10959685  1.30286539  2.42567336 -0.82654421 -0.01075101  0.851975320
#> [59,] -1.26087244  3.27637407  0.35929857  1.05281586 -1.43407403  1.173687550
#> [60,] -1.52206614  1.79489975 -0.33082720  0.99602740  1.11155205  0.196947147
#> [61,]  1.35452147  2.46037709 -0.25138125 -1.66482557  0.37463116 -0.745510708
#> [62,]  0.93541981 -0.61964456  2.09574208 -0.05569470  1.82573513  0.255991522
#> [63,]  4.36545770  0.51237927 -2.18648599  2.12424731 -0.01624430 -2.054853673
#> [64,]  0.49976873 -3.43013449 -0.78198124 -1.24522704 -1.16820750 -0.557866407
#> [65,]  2.28093675 -0.19441383  1.01226064 -3.36957600  1.56043016  1.711617208
#> [66,] -0.23703633  0.67594918 -0.28487533 -0.25598604  2.47218024  0.771870212
#> [67,] -2.44029420 -0.98292416 -2.52154120 -1.32320586 -0.36697728 -0.098037461
#> [68,]  0.08767379 -0.24619106 -2.59998415  0.14731033  0.72843686  1.170331755
#> [69,]  1.67254999  1.49937783  0.08055612 -1.75509908  1.36965516  1.595438530
#> [70,] -1.10331590 -0.15710217 -0.59222334 -0.12483345  0.24811213 -0.181938060
#> [71,]  0.19819077  1.00960968  0.71408507  1.55744834 -3.07028981 -0.333454103
#> [72,]  0.98924592  3.30582333 -1.91566026  0.02073128  1.26816027 -1.808580236
#> [73,]  1.22390387 -0.70875958  2.12356215 -0.92751738  1.52488173  0.675741852
#> [74,] -1.02295544 -0.25866087 -0.64929914 -1.83986540 -2.05540629 -0.472837941
#> [75,]  1.64172219 -1.02784392 -0.91509096  0.45459816  0.79625449  0.324813994
#> [76,]  1.81086382  0.57846179 -2.20079914  1.23378170 -2.75895200  1.521891073
#> [77,] -1.06735490 -0.29839478  0.26243399 -0.15851068  1.69887749 -1.157902139
#> [78,] -0.77628937 -0.39154284 -1.92516641  0.86589909  0.09701506 -1.663331304
#> [79,] -1.21317256  1.26811946 -0.32650975 -0.28146744  0.82285640 -1.278680182
#> [80,] -2.45392584 -2.43316354 -0.30239945  1.39063959 -0.26403844 -0.531906810
#> 
#> $loadings
#>               [,1]         [,2]          [,3]         [,4]         [,5]
#>  [1,] -0.007907408  0.270526866 -0.1346712581  0.104027296 -0.126418953
#>  [2,] -0.054350954  0.114923658 -0.0181967641  0.055624084  0.147862732
#>  [3,] -0.064944236  0.166166291  0.1379580022 -0.272085595 -0.019622197
#>  [4,]  0.288963709  0.285763351  0.0447231266 -0.101896305 -0.089373970
#>  [5,] -0.010044191  0.305929506 -0.0009855362 -0.056007642 -0.024672587
#>  [6,] -0.025766375  0.269265072 -0.1225929663 -0.112212757 -0.303260480
#>  [7,] -0.123173378  0.323683296 -0.2606000263  0.211544752  0.034075860
#>  [8,] -0.198349136  0.221068688 -0.3568604653 -0.029350155 -0.136964627
#>  [9,] -0.084633840  0.127479767 -0.1875663683  0.165442284 -0.019979445
#> [10,]  0.166891755  0.151028319 -0.3098019805  0.142754582  0.097009827
#> [11,] -0.177695228 -0.004899100  0.0753697185 -0.154844568  0.218082027
#> [12,] -0.340662705 -0.027886330 -0.0459786749 -0.009847259  0.138068558
#> [13,]  0.056267272  0.259969757  0.1625712917  0.346074069 -0.372989323
#> [14,] -0.208673053  0.245709780 -0.0495597170 -0.251617875  0.313946761
#> [15,]  0.194331074  0.138882645 -0.2437843179 -0.059446437 -0.025929835
#> [16,] -0.248947154 -0.001222654 -0.1216218398  0.110444351 -0.407289398
#> [17,] -0.099005530  0.049072511 -0.0882831462  0.322808106 -0.248102781
#> [18,] -0.105172423  0.119320545  0.0988777535 -0.130283728 -0.106904843
#> [19,] -0.149709844 -0.089084891 -0.0949332008  0.143896146 -0.081850240
#> [20,] -0.028460398 -0.003786869  0.2237221447  0.231194460  0.208863334
#> [21,]  0.070620393  0.194364490 -0.3188777229 -0.162544961  0.141954627
#> [22,] -0.054039914  0.284461778  0.0016323577  0.011418776  0.092962813
#> [23,] -0.296679452  0.219477782 -0.2099858872 -0.052896946 -0.096501018
#> [24,] -0.108014508  0.142823533  0.0323119931  0.004078892  0.062701021
#> [25,] -0.013135682 -0.096537482  0.4518069771  0.257880475 -0.118500275
#> [26,] -0.272241045  0.218515950  0.0783360106  0.187862046  0.003219405
#> [27,]  0.049764074  0.244447856  0.0327620341  0.042175147 -0.129663416
#> [28,] -0.139704253  0.047021417 -0.2203429528  0.435558684 -0.194206651
#> [29,] -0.026552492  0.334921688 -0.1487928122  0.108209934  0.299974166
#> [30,] -0.095756877  0.188706122  0.2879865577  0.031370531 -0.337816403
#> [31,] -0.286327893  0.016984916 -0.0035272670  0.104699186  0.288976162
#> [32,] -0.241861131  0.208778175 -0.0022639029  0.075523620 -0.258075127
#> [33,] -0.168318826  0.040560476 -0.0144626390  0.289249740  0.097696346
#> [34,]  0.036900098 -0.235417402  0.0176137173  0.070599690  0.119878672
#> [35,]  0.055731568  0.171898143 -0.0469189059 -0.184313250  0.017995954
#> [36,]  0.061006304 -0.255681493 -0.0962174410  0.238018538 -0.111571263
#> [37,]  0.200358213  0.055925165 -0.3570718374  0.119349191  0.331869201
#> [38,]  0.383916827 -0.040313802 -0.2055934428  0.206349543  0.097574273
#> [39,]  0.334018148 -0.178990539 -0.1786034771  0.167838017 -0.168236076
#>                [,6]
#>  [1,] -0.0049321154
#>  [2,] -0.3667098942
#>  [3,]  0.0830748871
#>  [4,]  0.0136962645
#>  [5,]  0.1582704751
#>  [6,] -0.1296597068
#>  [7,]  0.1099498946
#>  [8,]  0.0597092961
#>  [9,] -0.0555225440
#> [10,]  0.1067432490
#> [11,] -0.0376990447
#> [12,] -0.2649881493
#> [13,]  0.0002202799
#> [14,] -0.0270200862
#> [15,]  0.1911387534
#> [16,]  0.1287637590
#> [17,] -0.1407074857
#> [18,]  0.1540956062
#> [19,]  0.3096533745
#> [20,] -0.2737300615
#> [21,] -0.0529224406
#> [22,]  0.2489194502
#> [23,]  0.0884256988
#> [24,] -0.0140912439
#> [25,]  0.0044153702
#> [26,] -0.0247163277
#> [27,] -0.0398773617
#> [28,]  0.3059863737
#> [29,] -0.1474950314
#> [30,] -0.0498461608
#> [31,] -0.3479733126
#> [32,]  0.2886978056
#> [33,] -0.1241452725
#> [34,]  0.2945319290
#> [35,] -0.3082694573
#> [36,] -0.2825422619
#> [37,] -0.0534942102
#> [38,]  0.0045059335
#> [39,]  0.1130271900
#> 
#> $weights
#>               [,1]         [,2]         [,3]         [,4]          [,5]
#>  [1,]  0.052215879  0.240419308 -0.161908752  0.024740216 -0.2111604497
#>  [2,] -0.034827909  0.084474856 -0.173922160  0.067864937 -0.1175210182
#>  [3,] -0.001391453  0.141335334  0.154065251 -0.224649019  0.0089002370
#>  [4,]  0.269622725  0.313179816 -0.037979386 -0.054736782 -0.0012735403
#>  [5,]  0.027378727  0.211060958  0.007106119  0.071613945 -0.1542108542
#>  [6,] -0.002555356  0.099603511 -0.178109475 -0.187903009 -0.2954068622
#>  [7,] -0.116609767  0.181948312 -0.091708642  0.187746575  0.1348122575
#>  [8,] -0.199633821 -0.070587422 -0.459236466 -0.003164958 -0.1282159006
#>  [9,] -0.149144225 -0.050383249 -0.146224130  0.187872439  0.0326676473
#> [10,]  0.101522309  0.137118268 -0.246453561  0.093856356  0.0142865523
#> [11,] -0.189760666  0.026011039  0.053665156 -0.137372414  0.2331523845
#> [12,] -0.276556703  0.065526328 -0.067606740  0.057921765  0.1478701776
#> [13,]  0.218056618  0.280310383  0.065577276  0.231986307 -0.2279127641
#> [14,] -0.151591107  0.117880080 -0.112208565 -0.242467908  0.2201492887
#> [15,]  0.195864430  0.189164526 -0.185165309 -0.026577860  0.1077735435
#> [16,] -0.257267985 -0.042343842 -0.073419847  0.045830324 -0.2249531996
#> [17,] -0.148346511  0.020431183 -0.143372621  0.046835578 -0.3366421512
#> [18,] -0.084111601  0.053355845  0.094413706 -0.227346273 -0.0567815343
#> [19,] -0.195725609 -0.010192432 -0.019555057  0.118765157  0.0686796085
#> [20,]  0.007935439 -0.035123813  0.176232317  0.217041233 -0.0173703772
#> [21,]  0.056749548  0.140405020 -0.181444012 -0.108024779  0.0780527249
#> [22,]  0.013721499  0.193867288 -0.050439336  0.072322950  0.1762406678
#> [23,] -0.216454579  0.067135799 -0.177081772  0.015522853 -0.0345302368
#> [24,] -0.097751534  0.079034635  0.023245750  0.146139763  0.0076540950
#> [25,]  0.002239107  0.009120856  0.440139152  0.164461637 -0.1230349122
#> [26,] -0.081356991  0.257305767  0.140494374  0.136831602  0.0555499048
#> [27,]  0.173124225  0.196695428 -0.028694998  0.030037514 -0.0267072869
#> [28,] -0.073427432  0.078668734 -0.047100811  0.352253902 -0.0570259242
#> [29,]  0.050438770  0.209972241 -0.155411864  0.068260790  0.1590282865
#> [30,]  0.009624597  0.136710186  0.155944665 -0.024523385 -0.4211525788
#> [31,] -0.294404574  0.115712071  0.054534578  0.193810422  0.1746227806
#> [32,] -0.155982776  0.100292492  0.041414692 -0.030958106 -0.1892936819
#> [33,] -0.069622279  0.136210412 -0.001628406  0.296639360  0.0556256063
#> [34,]  0.015047130 -0.126879646  0.095115710  0.077653748  0.0529430847
#> [35,]  0.210646938  0.090614166 -0.054018010 -0.267620344  0.0007203354
#> [36,]  0.050204885 -0.235970969 -0.029264420  0.205742962 -0.1602293133
#> [37,]  0.187580708  0.035035882 -0.127899924  0.140120255  0.2123884365
#> [38,]  0.382605577 -0.160444754 -0.059080333  0.284081768  0.1337327840
#> [39,]  0.180538911 -0.415369848 -0.300875022  0.086247873 -0.1001053218
#>               [,6]
#>  [1,] -0.029665386
#>  [2,] -0.430577447
#>  [3,]  0.162026460
#>  [4,]  0.047873822
#>  [5,] -0.031603106
#>  [6,] -0.005719541
#>  [7,]  0.234496364
#>  [8,]  0.060561520
#>  [9,] -0.038825188
#> [10,]  0.036902990
#> [11,]  0.006304792
#> [12,] -0.164474372
#> [13,] -0.029147353
#> [14,] -0.052668936
#> [15,]  0.236984837
#> [16,]  0.219672387
#> [17,] -0.131679559
#> [18,]  0.122756935
#> [19,]  0.245419135
#> [20,] -0.217703853
#> [21,] -0.117210298
#> [22,]  0.095201600
#> [23,]  0.127892607
#> [24,]  0.072265151
#> [25,] -0.041220612
#> [26,]  0.102400260
#> [27,]  0.071365384
#> [28,]  0.239776939
#> [29,] -0.144274171
#> [30,]  0.019200216
#> [31,] -0.317604921
#> [32,]  0.173622871
#> [33,] -0.124328637
#> [34,]  0.213372600
#> [35,] -0.227915458
#> [36,] -0.187689566
#> [37,] -0.070876063
#> [38,]  0.120492759
#> [39,]  0.091659035
#> 
#> $center
#>  [1]  0.52500  0.45000  0.47500  0.60000  0.53750  0.47500  0.52500  0.47500
#>  [9]  0.37500  0.50000  0.46250  0.51250  0.46250  0.40000  0.43750  0.48750
#> [17]  0.45000  0.51250  0.51250  0.51250  0.45000  0.55000  0.42500  0.42500
#> [25]  0.47500  0.46250  0.52500  0.51250  0.48750  0.40000  0.57500  0.48750
#> [33]  0.41250  0.70000 64.23634  1.77500  2.51250  0.55000  0.25000
#> 
#> $scale
#>  [1]  0.5025253  0.5006325  0.5025253  0.4929888  0.5017375  0.5025253
#>  [7]  0.5025253  0.5025253  0.4871774  0.5031546  0.5017375  0.5029973
#> [13]  0.5017375  0.4929888  0.4992082  0.5029973  0.5006325  0.5029973
#> [19]  0.5029973  0.5029973  0.5006325  0.5006325  0.4974619  0.4974619
#> [25]  0.5025253  0.5017375  0.5025253  0.5029973  0.5029973  0.4929888
#> [31]  0.4974619  0.5029973  0.4953901  0.4611488 13.5030422  0.7458747
#> [37]  0.8999824  0.7778581  0.4357447
#> 
#> $cox_fit
#> $cox_fit$coefficients
#> [1] 5.004052 2.746088 2.826956 3.123682 2.212297 1.836690
#> 
#> $cox_fit$var
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 1.8176427 1.0007947 1.0270697 1.1557178 0.8273513 0.6773313
#> [2,] 1.0007947 0.6200044 0.5764073 0.6590198 0.4650547 0.3822643
#> [3,] 1.0270697 0.5764073 0.6412628 0.6891091 0.4976229 0.3878208
#> [4,] 1.1557178 0.6590198 0.6891091 0.8165358 0.5775589 0.4726054
#> [5,] 0.8273513 0.4650547 0.4976229 0.5775589 0.4824611 0.3348504
#> [6,] 0.6773313 0.3822643 0.3878208 0.4726054 0.3348504 0.3287053
#> 
#> $cox_fit$loglik
#> [1] -56.43995 -13.11777
#> 
#> $cox_fit$score
#> [1] 47.66948
#> 
#> $cox_fit$iter
#> [1] 8
#> 
#> $cox_fit$linear.predictors
#>  [1]  -5.39087955  -6.15109660   5.09550487 -13.88375547   2.39351618
#>  [6] -13.29476930  -2.75192032  15.22802654  -6.75150764   3.03694859
#> [11]  20.46668210  -2.20388522   7.40235358   0.06153643   1.73042067
#> [16]   1.63285788 -15.14819858 -16.61315366   3.19944499  -5.09653794
#> [21]  -5.08886457   6.00858147   5.49932139   1.07251252 -16.68306316
#> [26]  -9.87033333  13.63075463  -2.21580410  -7.72364593 -20.89429368
#> [31]  23.69774455  -5.47242729  -4.64364378   2.09307288  13.01430218
#> [36]  -0.38140506  17.23261789   6.16118530  -8.87236032   9.57734124
#> [41]   4.72160666  10.63749894   4.78039144  -0.45588309  -9.78156407
#> [46]  -0.41319153 -19.01181143 -18.33508937  17.87312742  -1.80604943
#> [51]  -8.92843325   2.38355006   1.27385539  20.47855089  18.01160999
#> [56]  -9.62908763 -11.50954928   8.84579672   5.97522735   2.30930801
#> [61]   7.08300227  13.23913535  19.89632332 -16.62795366   9.81202643
#> [66]   5.95200818 -27.16404514  -3.36617391  13.19271845  -7.80186252
#> [71]   3.24305062   8.16133664  11.89873024 -18.82754928   6.58394537
#> [76]   4.97416410  -4.28205147 -10.53776977  -4.91879100 -17.03328838
#> 
#> $cox_fit$residuals
#>             1             2             3             4             5 
#> -2.744308e-02 -1.781275e-09 -1.504830e-08 -1.243296e-15 -1.760046e-01 
#>             6             7             8             9            10 
#> -5.402201e-15 -2.047726e-10  1.600869e-01 -9.771827e-10 -9.588986e-10 
#>            11            12            13            14            15 
#>  5.583397e-01 -1.017192e-11 -5.262802e-06 -1.051131e-01 -2.596300e-10 
#>            16            17            18            19            20 
#> -2.354962e-10 -2.204648e-13 -1.956207e-16  6.059654e-01 -6.046914e-04 
#>            21            22            23            24            25 
#> -1.855479e-10 -2.322817e-07 -7.847668e-07 -4.696986e-02 -5.617846e-09 
#>            26            27            28            29            30 
#> -2.377997e-15 -2.501978e-02 -3.282543e-09 -1.419315e-12 -7.767146e-20 
#>            31            32            33            34            35 
#> -8.044200e-01 -8.592934e-10 -8.042840e-09 -2.514877e-04  1.856192e-01 
#>            36            37            38            39            40 
#> -1.097466e-02  8.261257e-02 -3.961750e-04 -6.450978e-15  5.523967e-01 
#>            41            42            43            44            45 
#> -5.169046e-09 -8.523020e-03 -1.586027e-07 -1.018698e-02 -2.598743e-15 
#>            46            47            48            49            50 
#> -3.069642e-03 -5.472771e-10 -3.278640e-16 -1.856164e-01  1.075299e-02 
#>            51            52            53            54            55 
#> -1.014002e-08 -7.175306e-02 -4.758185e-09 -4.216039e-02  9.969438e-01 
#>            56            57            58            59            60 
#> -5.498683e-11 -9.917412e-07 -3.195386e-07 -8.049978e-05 -1.617904e-01 
#>            61            62            63            64            65 
#> -6.801896e-07  5.303204e-01 -4.037155e-01 -1.927468e-16 -3.961013e-01 
#>            66            67            68            69            70 
#> -1.769160e-08 -4.800948e-20 -7.061154e-09 -9.098569e-01 -6.572449e-06 
#>            71            72            73            74            75 
#> -4.115968e-01 -2.056243e-01 -4.426646e-03 -1.361713e-15 -2.321597e-06 
#>            76            77            78            79            80 
#>  3.289011e-01 -2.220045e-04 -7.980437e-13 -6.108218e-09 -1.205199e-15 
#> 
#> $cox_fit$means
#> [1] -3.747003e-16 -3.080869e-16 -4.024558e-17  3.635980e-16  1.804112e-17
#> [6]  1.942890e-16
#> 
#> $cox_fit$method
#> [1] "efron"
#> 
#> $cox_fit$class
#> [1] "coxph"
#> 
#> 
#> $keepX
#> [1] 0 0 0 0 0 0
#> 
#> $time
#>  [1] 6.1342466 2.0383562 0.8328767 1.1205479 3.9917808 1.4164384 1.3205479
#>  [8] 1.6712329 2.0547945 0.4520548 0.9150685 0.8794521 1.2356164 5.6712329
#> [15] 0.5013699 0.7506849 2.0164384 1.2794521 3.5452055 4.8493151 1.5890411
#> [22] 0.9150685 1.3287671 4.1123288 4.7589041 0.5945205 1.5780822 1.5780822
#> [29] 1.3506849 0.8602740 0.7753425 1.8109589 2.3452055 2.5178082 2.4356164
#> [36] 4.2246575 1.4246575 2.1972603 0.6054795 2.5013699 0.7150685 1.7260274
#> [43] 1.1315068 3.9013699 0.6164384 3.4191781 5.4219178 1.6054795 1.2849315
#> [50] 5.9260274 2.7726027 4.7041096 1.0849315 1.0246575 0.1835616 2.0958904
#> [57] 5.3369863 0.6410959 1.7726027 4.6821918 0.9260274 1.9397260 1.1890411
#> [64] 1.3260274 2.6575342 0.7561644 1.5972603 1.9150685 2.4493151 4.3726027
#> [71] 3.6876712 2.9753425 1.6000000 1.8410959 1.1890411 3.3397260 3.6958904
#> [78] 1.4712329 2.2712329 1.6630137
#> 
#> $status
#>  [1] 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
#> [39] 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1
#> [77] 0 0 0 0
#> 
#> attr(,"class")
#> [1] "big_pls_cox"

The big_pls_cox_gd() function exposes a gradient-descent variant that is often preferred for streaming workloads. Both functions can be combined with foreach::foreach() for multi-core execution.

Further reading

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.