The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The binaryMM
package allows users to fit marginalized
transition and latent variables (mTLV) models for binary longitudinal
data. The aim of this vignette is to provide an overview of the models
together with example code and analyses.
Let \(N\) be the total number of subjects, \(\boldsymbol{Y}_{i}\) be the \(n_i-\)vector of binary responses for subject \(i\), \(\boldsymbol{X}_i\) be the \(n_i \times p\) matrix of covariates and \(U_i \sim N(0, 1)\). The marginalized transition and latent variable (mTLV) model described in Schildcrout and Heagerty (2007) can be defined by two equations:
\[logit\left(\mu_{ij}^m\right) = \boldsymbol{\beta}^T\boldsymbol{X}_i\] \[logit\left(\mu_{ij}^c\right) = \Delta_{ij}(\boldsymbol{X}_i) + \gamma(\boldsymbol{X}_i)Y_{i(j-1)} + \sigma(\boldsymbol{X}_i) U_i\]
where \(\mu_{ij}^m = E[Y_{ij} | \boldsymbol{X}_i]\) and \(\mu_{ij}^c = E[Y_{ij} | \boldsymbol{X}_i, Y_{i(j-1)}, U_i]\).
The first equation describes the marginal mean model and the relationship between the outcome \(\boldsymbol{Y}_{i}\) and the covariates \(\boldsymbol{X}_i\). The second equation describes the conditional mean model (also named the dependence model) and the relationship between the outcome \(\boldsymbol{Y}_{i}\) measured over time for each subject \(i\). In particular, the conditional model includes a short-term transition component \(\gamma(\boldsymbol{X}_i)Y_{i(j-1)}\), and a random intercept term, \(\sigma(\boldsymbol{X}_i) U_i\), describing long-term non-diminishing dependence.
\(\Delta_{ij}(\boldsymbol{X}_i)\) is a function of the marginal mean, \(\mu_{ij}^m\), and the conditional mean, \(\mu_{ij}^c\), such that the two model above are cohesive. In particular, \(\Delta_{ij}(\boldsymbol{X}_i)\) is the value that satisfies the convolution equation:
\[\mu_{ij}^m = E_{U_i, Y_{i(j-1)}}(\mu_{ij}^c) = E_{Z_i}[E_{Y_{i(j-1)}}[logit^{-1}(\Delta_{ij}(\boldsymbol{X}_i) + \gamma(\boldsymbol{X}_i)Y_{i(j-1)} + \sigma(\boldsymbol{X}_i) U_i)]]\] \(\Delta_{ij}(\boldsymbol{X}_i)\) in mTLV is analytically intractable and its value is computed iteratively with a Newton-Raphson method.
Detailed information on marginalized models with transition and/or latent terms can be found in Heagerty (2002), Heagerty and Zeger (1999) and Schildcrout and Heagerty (2007).
The next two sections explain how different specifications of mTLV
models can be fitted using the binaryMM
package. The data
used are part of the package.
library(binaryMM)
madras
contains a subset of the data from the Madras
Longitudinal Schizophrenia Study Diggle et al.
(2002), which
collected monthly symptom data on 86 schizophrenia patients after their
initial hospitalization. The dataframe has 922 observations on 86
patients and includes the variables:
though
. An indicator for thought disorders
age
. An indicator for age-at-onset \(\geq\) 20 years
gender
. An indicator for female gender
month
. Months since hospitalization
id
. A unique patient identifiers
The primary question of interest is whether subjects with an older age-at-onset tend to recover more or less quickly, and whether female patients recover more or less quickly. Recovery is measured by a reduction in the presentation of symptoms.
data(madras)
str(madras)
#> 'data.frame': 922 obs. of 5 variables:
#> $ id : int 1 1 1 1 1 1 1 1 1 1 ...
#> $ thought: int 1 1 1 1 1 0 0 0 0 0 ...
#> $ month : int 0 1 2 3 4 5 6 7 8 9 ...
#> $ gender : int 0 0 0 0 0 0 0 0 0 0 ...
#> $ age : num 1 1 1 1 1 1 1 1 1 1 ...
The marginal mean model is defined as:
\[logit(\mu_{ij}^m) = \beta_0 + \beta_1month_{ij} + \beta_2age_i + \beta_3gender_i + \beta_4 age_i \times month_{ij} + \beta_5 gender_i \times month_{ij}\]
Multiple dependence models are explored to demonstrate how the
mm
function can be used. The different dependence models
are declared by changing the t.formula
and
lv.formula
arguments. Note that by default formula both are
initially assigned NULL
and if neither association models
are specified, then an error is returned.
\[logit(\mu_{ij}^c) = \Delta_{ij}(\boldsymbol{X}_i) + \gamma Y_{i(j-1)}\]
<- mm(thought ~ month*gender + month*age, t.formula = ~1,
mod.mt data = madras, id = id)
summary(mod.mt)
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = thought ~ month * gender + month * age, t.formula = ~1,
#> id = id, data = madras)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 688.3789 705.5594 -337.1895 674.3789
#>
#> Marginal Mean Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> (Intercept) 1.183683 0.444318 7.0971 0.007721
#> month -0.342857 0.081841 17.5501 2.798e-05
#> gender -0.141884 0.416152 0.1162 0.733147
#> age -0.649770 0.449183 2.0925 0.148021
#> month:gender -0.143788 0.081853 3.0859 0.078975
#> month:age 0.111555 0.085896 1.6867 0.194040
#>
#> Dependence Model Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> gamma:(Intercept) 3.16583 0.23014 189.23 < 2.2e-16
#>
#> Number of clusters: 86
#> Maximum cluster size: 12
#> Convergence status (nlm code): 1
#> Number of iterations: 22
\[logit(\mu_{ij}^c) = \Delta_{ij}(\boldsymbol{X}_i) + \sigma U_i\]
<- mm(thought ~ month*gender + month*age, lv.formula = ~1,
mod.mlv data = madras, id = id)
summary(mod.mlv)
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = thought ~ month * gender + month * age, lv.formula = ~1,
#> id = id, data = madras)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 750.5767 767.7571 -368.2883 736.5767
#>
#> Marginal Mean Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> (Intercept) 1.569015 0.399400 15.4326 8.550e-05
#> month -0.399007 0.062845 40.3107 2.166e-10
#> gender -0.539932 0.355893 2.3016 0.12924
#> age -0.911165 0.393487 5.3621 0.02058
#> month:gender -0.081899 0.060179 1.8521 0.17354
#> month:age 0.140215 0.063107 4.9366 0.02629
#>
#> Dependence Model Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> log(sigma):(Intercept) 0.81289 0.12764 40.559 1.908e-10
#>
#> Number of clusters: 86
#> Maximum cluster size: 12
#> Convergence status (nlm code): 1
#> Number of iterations: 42
\[logit(\mu_{ij}^c) = \Delta_{ij}(\boldsymbol{X}_i) + \gamma Y_{i(j-1)} + \sigma U_i\]
<- mm(thought ~ month*gender + month*age,
mod.mtlv t.formula = ~1, lv.formula = ~1,
data = madras, id = id)
summary(mod.mtlv)
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = thought ~ month * gender + month * age, lv.formula = ~1,
#> t.formula = ~1, id = id, data = madras)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 680.1283 699.7631 -332.0642 664.1283
#>
#> Marginal Mean Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> (Intercept) 1.327440 0.434588 9.3299 0.002255
#> month -0.367564 0.077443 22.5268 2.072e-06
#> gender -0.282497 0.402015 0.4938 0.482241
#> age -0.732176 0.436180 2.8177 0.093228
#> month:gender -0.111740 0.078306 2.0362 0.153591
#> month:age 0.117705 0.080870 2.1184 0.145536
#>
#> Dependence Model Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> gamma:(Intercept) 2.511119 0.303963 68.2486 <2e-16
#> log(sigma):(Intercept) 0.074494 0.244870 0.0925 0.761
#>
#> Number of clusters: 86
#> Maximum cluster size: 12
#> Convergence status (nlm code): 1
#> Number of iterations: 50
\[logit(\mu_{ij}^c) = \Delta_{ij}(\boldsymbol{X}_i) + (\gamma_0 + \gamma_1 gender_i) Y_{i(j-1)}\]
<- mm(thought ~ month*gender + month*age,
mod.mtgender t.formula = ~gender, data = madras, id = id)
summary(mod.mtgender)
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = thought ~ month * gender + month * age, t.formula = ~gender,
#> id = id, data = madras)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 690.2915 709.9263 -337.1458 674.2915
#>
#> Marginal Mean Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> (Intercept) 1.175157 0.444200 6.9990 0.008156
#> month -0.342431 0.081702 17.5662 2.775e-05
#> gender -0.137202 0.416448 0.1085 0.741809
#> age -0.635415 0.452122 1.9752 0.159901
#> month:gender -0.143961 0.082080 3.0763 0.079443
#> month:age 0.110312 0.085973 1.6464 0.199456
#>
#> Dependence Model Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> gamma:(Intercept) 3.11501 0.28599 118.634 <2e-16
#> gamma:gender 0.14321 0.48550 0.087 0.768
#>
#> Number of clusters: 86
#> Maximum cluster size: 12
#> Convergence status (nlm code): 1
#> Number of iterations: 34
lv.fomula
will take the form: ~0+I0+I1
.\[logit(\mu_{ij}^c) = \Delta_{ij}(\boldsymbol{X}_i) + [\sigma_0I(gender_i == 0) + \sigma_1I(gender_i == 1)]U_i\]
# set-up two new indicator variables for gender
$g0 <- ifelse(madras$gender == 0, 1, 0)
madras$g1 <- ifelse(madras$gender == 1, 1, 0)
madras<- mm(thought ~ month*gender + month*age,
mod.mlvgender lv.formula = ~0+g0+g1, data = madras, id = id)
summary(mod.mlvgender)
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = thought ~ month * gender + month * age, lv.formula = ~0 +
#> g0 + g1, id = id, data = madras)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 752.4992 772.1340 -368.2496 736.4992
#>
#> Marginal Mean Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> (Intercept) 1.566764 0.400938 15.2705 9.316e-05
#> month -0.395507 0.064395 37.7227 8.155e-10
#> gender -0.515176 0.366086 1.9804 0.15935
#> age -0.921331 0.395394 5.4296 0.01980
#> month:gender -0.091526 0.069640 1.7273 0.18875
#> month:age 0.140228 0.063187 4.9251 0.02647
#>
#> Dependence Model Parameters:
#> Estimate Model SE Chi Square Pr(>Chi)
#> log(sigma):g0 0.84429 0.17128 24.297 8.257e-07
#> log(sigma):g1 0.77199 0.19523 15.636 7.678e-05
#>
#> Number of clusters: 86
#> Maximum cluster size: 12
#> Convergence status (nlm code): 1
#> Number of iterations: 50
The parameters from the marginal mean model have the same interpretation regardless of the dependence model used. Overall, older individuals tend to have slower recovery time than younger subjects, while females recover quicker than males.
The binaryMM
package allows user to add sampling weights
and estimates the parameters of interest in those cases where the
available sample might not be representative of the target population
(i.e., survey data). This section shows how the sampling weights can be
added in the mm
syntax using the datarand
dataframe.
The dataframe has 24,999 observation on 2,500 subjects and includes the variables:
id
. A unique patient identifier
Y
. A binary longitudinal outcome
time
. A continuous time-varying covariate indicating
time of each follow-up
binary
. A binary time-fixed covariate indicating
whether a patient was assigned to a treatment arm (1) or a control arm
(0)
data(datrand)
str(datrand)
#> 'data.frame': 24999 obs. of 4 variables:
#> $ id : int 1 1 1 1 1 1 1 1 1 2 ...
#> $ Y : int 0 0 1 1 0 0 0 0 0 0 ...
#> $ time : num 0 1 2 3 4 5 6 7 8 0 ...
#> $ binary: num 0 0 0 0 0 0 0 0 0 0 ...
From datarand
a biased sampled can be created by
assuming that complete data are available only for 1) every one who
experienced the event Y
at least once, and 2) 20% of the
subjects who never experienced the event Y
.
# create the sampling scheme
<- tapply(datrand$Y, FUN = mean, INDEX = datrand$id)
Ymean <- names(Ymean[Ymean != 0])
some.id <- names(Ymean)[!(names(Ymean) %in% some.id)]
none.id <- some.id[rbinom(length(none.id), 1, 1) == 1]
samp.some <- none.id[rbinom(length(none.id), 1, 0.20) == 1]
samp.none
# sample subjects and create a weight vector
$sampled <- ifelse(datrand$id %in% c(samp.none, samp.some), 1, 0)
datrand<- subset(datrand, sampled == 1)
dat.small <- ifelse(dat.small$id %in% samp.none, 1/1, 1/0.2)
wt
# fit the mTLV model
<- mm(Y ~ time*binary, t.formula = ~1, data = dat.small,
mod.wt id = id, weight = wt)
summary(mod.wt)
#> Warning in summary.MMLong(mod.wt): When performing a weighted likelihood
#> analysis (by specifying the weight argument), robust standard errors are
#> reported. Model based standard errors will not be correct and should not be
#> used.
#>
#> Class:
#> MMLong
#>
#> Call:
#> mm(mean.formula = Y ~ time * binary, t.formula = ~1, id = id,
#> data = dat.small, weight = wt)
#>
#> Information Criterion:
#> AIC BIC logLik Deviance
#> 74768.35 74795.57 -37379.17 74758.35
#>
#> Marginal Mean Parameters:
#> Estimate Robust SE Chi Square Pr(>Chi)
#> (Intercept) -1.014456 0.045303 501.435 < 2.2e-16
#> time -0.161408 0.010246 248.177 < 2.2e-16
#> binary 0.320099 0.072732 19.369 1.077e-05
#> time:binary 0.158889 0.013982 129.130 < 2.2e-16
#>
#> Dependence Model Parameters:
#> Estimate Robust SE Chi Square Pr(>Chi)
#> gamma:(Intercept) 1.043764 0.042677 598.17 < 2.2e-16
#>
#> Number of clusters: 1712
#> Maximum cluster size: 15
#> Convergence status (nlm code): 1
#> Number of iterations: 27
Note that when the weight
argument is specified,
model-based standard error will not be correct and should not be
reported. Thus, the software will return robust standard errors only
together with a warning message.
The two examples above showed how different mTLV model can be used
using simulated data as well as data from the Madras Longitudinal
Schizophrenia Study. The table below summarizes the functions in
mm
available to the user.
Function | Description |
---|---|
GenBinaryY |
Generate binary response variable under a user-specified mTLV model.
The outcome is generated from a Bernoulli distribution where the
probability of success is computed as the inverse-logit of the
conditional mean. The function requires the user to specify the mean
model formula (mean.formula ) in which a binary covariate is
regressed on covariates, one or both components of the dependence model
(the latent variable component lv.formula or the transition
term component t.formula ), the vector of cluster
identifiers (id ), a vector of values for the parameters of
the mean model (beta ), a vector of values for the
parameters of the transition component of the dependence model
(gamma ), a vector of values for the latent component of the
dependence model (sigma ), a dataframe (data )
with the mean model covariates (ordered by id and time) and a string of
the mane of the new binary variable (Yname ). The function
returns the entire data object with an additional column
Yname of the binary longitudinal outcome |
mm |
Fit mTLV model. The function requires the user to specify the mean
model formula (mean.formula ) in which a binary covariate is
regressed on covariates, one or both components of the dependence model
(the latent variable component lv.formula or the transition
term component t.formula ), the vector of cluster
identifiers (id ), and the dataframe to use
(data ). Users can additionally specify the sampling weights
(weight ) to estimate the parameters using weighted
likelihood. |
summary |
Summarize the results of a class MMLong generated using
mm . Tables with estimated parameters, standard errors and
p-value are printed for both the mean model and the dependence model
parameters |
anova |
Allows to compare two nested models of class MMLong
generated using mm . fits using mTLV. Currently comparison
can be made for two models only |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.