
Package ‘blosc’
September 1, 2025

Title Compress and Decompress Data Using the 'BLOSC' Library

Version 0.0.6

Description Arrays of structured data types can require large volumes of disk
space to store. 'Blosc' is a library that provides a fast and efficient way
to compress such data. It is often applied in storage of n-dimensional
arrays, such as in the case of the geo-spatial 'zarr' file format. This
package can be used to compress and decompress data using 'Blosc'.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.3)

Suggests dplyr, knitr, reticulate, rmarkdown, testthat (>= 3.0.0)

LinkingTo cpp11

URL https://pepijn-devries.github.io/blosc/,

https://github.com/pepijn-devries/blosc/

BugReports https://github.com/pepijn-devries/blosc/issues

SystemRequirements blosc: blosc-devel (rpm) or libblosc-dev (deb)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Pepijn de Vries [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7961-6646>),

Chris Maiwald [cph],
Alexander Gessler [cph]

Maintainer Pepijn de Vries <pepijn.devries@outlook.com>

Repository CRAN

Date/Publication 2025-09-01 17:20:14 UTC

1

https://pepijn-devries.github.io/blosc/
https://github.com/pepijn-devries/blosc/
https://github.com/pepijn-devries/blosc/issues
https://orcid.org/0000-0002-7961-6646

2 blosc_compress

Contents
blosc_compress . 2
blosc_info . 3
r_to_dtype . 4

Index 6

blosc_compress Compress and decompress with Blosc

Description

Use the Blosc library to compress or decompress data.

Usage

blosc_compress(
x,
compressor = "blosclz",
level = 7L,
shuffle = "noshuffle",
typesize = 4L,
...

)

blosc_decompress(x, ...)

Arguments

x In case of blosc_decompress(), x should always be raw data to be decom-
pressed. Use ... arguments to convert decompressed data to a specific data
type.
In case of blosc_compress(), x should either be raw data or a vector of
data to be compressed. In the latter case, you need to specify dtype (see
r_to_dtype()) in order to convert the data to raw information first. See vignette("blosc-compression")
for more details.

compressor The compression algorithm to be used. Can be any of "blosclz", "lz4",
"lz4hc", "zlib", or "zstd".

level An integer indicating the required level of compression. Needs to be between
0 (no compression) and 9 (maximum compression).

shuffle A shuffle filter to be activated before compression. Should be one of "noshuffle",
"shuffle", or "bitshuffle".

typesize BLOSC compresses arrays of structured data. This argument specifies the size
(integer) of the data structure / type in bytes. Default is 4L bytes (i.e. 32 bits),
which would be suitable for compressing 32 bit integers.

... Arguments passed to r_to_dtype().

blosc_info 3

Value

In case of blosc_compress() a vector of compressed raw data is returned. In case of blosc_decompress()
returns a vector of decompressed raw data. Or in in case dtype (see dtype_to_r()) is specified, a
vector of the specified type is returned.

Examples

my_dat <- as.raw(sample.int(2L, 10L*1024L, replace = TRUE) - 1L)
my_dat_out <- blosc_compress(my_dat, typesize = 1L)
my_dat_decomp <- blosc_decompress(my_dat_out)

After compressing and decompressing the data is the same as the original:
all(my_dat == my_dat_decomp)

blosc_info Information about compressed data

Description

Obtain information about raw data compressed with blosc.

Usage

blosc_info(x, ...)

Arguments

x Raw data compressed with blosc_compress().

... Ignored

Value

Returns a named list with information about blosc compressed data x.

Examples

data_compressed <-
blosc_compress(volcano, typesize = 2, dtype = "<i2", compressor = "lz4",

shuffle = "bitshuffle")

blosc_info(data_compressed)

4 r_to_dtype

r_to_dtype Convert from or to ZARR data types

Description

Use ZARR V2.0 data types to convert between R native types and raw data.

Usage

r_to_dtype(x, dtype, na_value = NA, ...)

dtype_to_r(x, dtype, na_value = NA, ...)

Arguments

x Object to be converted

dtype The data type used for encoding/decoding raw data. The dtype is a code con-
sisting of at least 3 characters. The first character indicates the endianness of the
data: '<' (little-endian), '>' (big-endian), or '|' (endianness not relevant).
The second character represents the main data type ('b' boolean (logical), 'i'
signed integer, 'u' unsigned integer, 'f' floating point number, 'c' complex
number). 'M' is used for date-time objects and 'm' for delta time (see difftime()).
The following characters are numerical indicating the byte size of the data type.
For example: dtype = "<f4" means a 32 bit floating point number; dtype =
"|b1" means an 8 bit logical value.
The main types 'M' and 'm' should always be ended with the time unit between
square brackets for storing the date time (difference). A valid code would be
"<M8[h].
For more details about dtypes see ZARR V2.0 or vignette("dtypes").

na_value When storing raw data, you may want to reserve a value to represent missing
values. This is also what R does for NA values. Other software may use differ-
ent values to represent missing values. Also, some data types have insufficient
storage capacity to store R NA values.
Therefore, you can use this argument to indicate which value should represent
missing values. By default it uses R NA. When set to NULL, missing values are
just processed as is, without any further notice or warning.
For more details see vignette("dtypes").

... Ignored

Details

One of the applications of BLOSC compression is in ZARR, which is used to store n-dimensional
structured data. r_to_dtype() and dtype_to_r() are convenience functions that allows you to
convert most common data types to R native types.

https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html
https://en.wikipedia.org/wiki/Endianness
https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html

r_to_dtype 5

R natively only supports logical() (actually stored as 32 bit integer in memory), integer()
(signed 32 bit integers), numeric() (64 bit floating points) and complex() (real and imaginary
component both represented by a 64 bit floating point). R also has some more complex classes, but
those are generally derivatives of the aforementioned types.

The functions documented here will attempt to convert raw data to R types (or vice versa). As not
all ’dtypes’ have an appropriate R type counterpart, some conversions will not be possible directly
and will result in an error.

For more details see vignette("dtypes").

Value

In case of r_to_dtype() a vector of encoded raw data is returned. In case of dtype_to_r() a
vector of an R type (appropriate for the specified dtype) is returned if possible.

Author(s)

Pepijn de Vries

Examples

Encode volcano data to 16 bit floating point values
volcano_encoded <-

r_to_dtype(volcano, dtype = "<f2")

Decode the volcano format to its original
volcano_reconstructed <-

dtype_to_r(volcano_encoded, dtype = "<f2")

The reconstruction is the same as its original:
all(volcano_reconstructed == volcano)

Encode a numeric sequence with a missing value represented by -999
r_to_dtype(c(1, 2, 3, NA, 4), dtype = "<i2", na_value = -999)

Index

blosc_compress, 2
blosc_decompress (blosc_compress), 2
blosc_info, 3

complex(), 5

difftime(), 4
dtype_to_r (r_to_dtype), 4

integer(), 5

logical(), 5

numeric(), 5

r_to_dtype, 4

6

	blosc_compress
	blosc_info
	r_to_dtype
	Index

