The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

CRAN_Status_Badge build R-CMD-check codecov DOI

bmgarch

bmgarch estimates Bayesian multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) models. Currently, bmgarch supports a variety of MGARCH(P,Q) parameterizations and simultaneous estimation of ARMA(1,1), VAR(1) and intercept-only (Constant) mean structures. In increasing order of complexity:

Installation

bmgarch is available on CRAN and can be installed with:

install.packages('bmgarch')

Linux

Linux users may need to install libv8 prior to installing bmgarch. For example, in Ubuntu, run sudo apt install libv8-dev before installing the package from CRAN or github. For those who’s distro installs libnode-dev instead of libv8-dev, run install.packages("V8") in R prior to installing bmgarch (during installationrstan looks explicitly for V8).

Development Version

The development version can be installed from GitHub with:

devtools::install_github("ph-rast/bmgarch")

How to cite this package

Please add at least one of the following citations when referring to to this package:

Rast, P., & Martin, S. R. (2021). bmgarch: An R-Package for Bayesian Multivariate GARCH models. Journal of Open Source Software, 6, 3452 - 4354. doi: https://joss.theoj.org/papers/10.21105/joss.03452

Rast, P., Martin, S. R., Liu, S., & Williams, D. R. (in press). A New Frontier for Studying Within-Person Variability: Bayesian Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Psychological Methods. https://doi.apa.org/10.1037/met0000357; Preprint-doi: https://psyarxiv.com/j57pk

Examples:

We present two examples, one with behavioral data and one with stocks from three major Japanese automakers.

Example 1: Behavioral Data

In this example, we use the pdBEKK(1,1) model for the variances, and an intercept-only model for the means.

library(bmgarch)

data(panas)
head(panas)
#>      Pos    Neg
#> 1 -2.193 -2.419
#> 2  1.567 -0.360
#> 3 -0.124 -1.202
#> 4  0.020 -1.311
#> 5 -0.150  2.004
#> 6  3.877  1.008

## Fit pdBEKK(1, 1) with ARMA(1,1) on the mean structure.
fit <- bmgarch(panas,
               parameterization = "pdBEKK",
               iterations = 1000,
               P = 1, Q = 1,
               distribution = "Student_t",
               meanstructure = "arma")
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'pdBEKKMGARCH' NOW.
#> 
#> COMPILING MODEL 'pdBEKKMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'pdBEKKMGARCH' NOW.

Parameter estimates

summary(fit)
#> Model: pdBEKK-MGARCH
#> Basic Specification: H_t = D_t R D_t
#> H_t = C + A'[y_(t-1)*y'_(t-1)]A + B'H_(t-1)B
#> 
#> Sampling Algorithm:  MCMC
#> Distribution:  Student_t
#> ---
#> Iterations:  1000
#> Chains:  4
#> Date:  Wed Nov 17 10:42:49 2021
#> Elapsed time (min):  19.21
#> 
#> ---
#> Constant correlation, R (diag[C]*R*diag[C]):
#> 
#>          mean   sd   mdn  2.5% 97.5% n_eff Rhat
#> R_Ng-Ps -0.06 0.38 -0.01 -0.89  0.85 56.84 1.05
#> 
#> 
#> Constant variances (diag[C]):
#> 
#>        mean   sd  mdn 2.5% 97.5% n_eff Rhat
#> var_Ps 1.02 0.73 1.26 0.02  2.92 12.69 1.15
#> var_Ng 1.17 0.33 1.25 0.35  1.83 31.01 1.07
#> 
#> 
#> MGARCH(1,1) estimates for A:
#> 
#>         mean   sd  mdn  2.5% 97.5% n_eff Rhat
#> A_Ps-Ps 0.46 0.18 0.42  0.20  0.75  2.27 2.83
#> A_Ng-Ps 0.05 0.06 0.06 -0.06  0.18  9.52 1.17
#> A_Ps-Ng 0.10 0.11 0.11 -0.17  0.27  7.81 1.19
#> A_Ng-Ng 0.39 0.12 0.39  0.17  0.58  4.00 1.42
#> 
#> 
#> MGARCH(1,1) estimates for B:
#> 
#>          mean   sd   mdn  2.5% 97.5%  n_eff Rhat
#> B_Ps-Ps  0.65 0.22  0.71  0.14  0.93   5.27 1.32
#> B_Ng-Ps -0.05 0.13 -0.03 -0.33  0.24 180.68 1.03
#> B_Ps-Ng  0.21 0.29  0.27 -0.42  0.93  91.08 1.06
#> B_Ng-Ng  0.49 0.20  0.61  0.04  0.70   4.05 1.43
#> 
#> 
#> ARMA(1,1) estimates on the location:
#> 
#>                  mean   sd   mdn  2.5% 97.5%  n_eff Rhat
#> (Intercept)_Pos  0.03 0.13  0.04 -0.33  0.21   7.78 1.19
#> (Intercept)_Neg  0.07 0.08  0.07 -0.10  0.29 788.15 1.01
#> Phi_Pos-Pos      0.13 0.34  0.25 -0.77  0.57   5.76 1.27
#> Phi_Pos-Neg     -0.38 0.42 -0.64 -0.78  0.70   4.69 1.35
#> Phi_Neg-Pos     -0.21 0.26 -0.16 -0.68  0.43  15.96 1.12
#> Phi_Neg-Neg      0.26 0.39  0.34 -0.73  0.74   6.16 1.26
#> Theta_Pos-Pos   -0.29 0.41 -0.42 -0.70  0.75   3.90 1.46
#> Theta_Pos-Neg    0.34 0.46  0.63 -0.81  0.71   3.79 1.47
#> Theta_Neg-Pos    0.24 0.28  0.17 -0.43  0.70   9.21 1.18
#> Theta_Neg-Neg   -0.35 0.44 -0.56 -0.77  0.72   4.49 1.38
#> 
#> 
#> Df constant student_t (nu):
#> 
#>  mean    sd   mdn  2.5% 97.5% n_eff  Rhat 
#> 51.82 25.68 45.69 16.84 99.71  4.13  1.41 
#> 
#> 
#> Log density posterior estimate:
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#> -796.43    7.38 -793.28 -811.48 -788.15    2.54    2.21

Forecasted values

fit.fc <- forecast(fit, ahead = 5)

fit.fc
#> ---
#> [Mean] Forecast for 5 ahead:
#> 
#> Pos :
#>       
#> period  mean   sd   mdn  2.5% 97.5%   n_eff Rhat
#>    201 -1.16 3.25 -1.15 -7.85  4.89  266.84 1.00
#>    202 -0.59 3.09 -0.63 -6.50  5.27 1082.14 1.00
#>    203 -0.44 2.95 -0.50 -6.36  5.49 1533.34 1.00
#>    204 -0.47 2.77 -0.46 -5.84  4.65 1728.88 1.00
#>    205 -0.36 2.83 -0.37 -5.69  5.02 2004.18 1.01
#> Neg :
#>       
#> period mean   sd  mdn  2.5% 97.5%   n_eff Rhat
#>    201 0.62 1.51 0.64 -2.20  3.48  121.81 1.01
#>    202 0.60 1.59 0.61 -2.62  3.66  209.94 1.01
#>    203 0.52 1.64 0.52 -2.80  3.74  836.84 1.00
#>    204 0.44 1.70 0.42 -2.88  3.74 1839.11 1.00
#>    205 0.36 1.67 0.36 -2.86  3.73 1747.95 1.00
#> ---
#> [Variance] Forecast for 5 ahead:
#> 
#> Pos :
#>       
#> period mean    sd  mdn 2.5% 97.5%   n_eff Rhat
#>    201 9.07  2.59 9.12 4.31 13.45   13.62 1.10
#>    202 8.21  6.29 6.73 3.52 23.95  442.56 1.03
#>    203 7.52  8.46 5.81 2.57 22.11 1187.97 1.01
#>    204 7.17  8.83 5.15 2.33 24.36 1392.74 1.01
#>    205 7.01 14.12 4.79 2.26 24.62 1908.12 1.01
#> Neg :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    201 1.91 0.33 1.89 1.43  2.61   13.10 1.15
#>    202 2.21 0.76 2.13 1.47  3.96 1598.27 1.00
#>    203 2.33 0.83 2.16 1.51  4.69 2124.16 1.00
#>    204 2.44 1.32 2.18 1.48  5.35 1741.05 1.01
#>    205 2.53 2.73 2.20 1.47  5.68 1991.43 1.00
#> [Correlation] Forecast for 5 ahead:
#> 
#> Neg_Pos :
#>       
#> period  mean   sd   mdn  2.5% 97.5%  n_eff Rhat
#>    201 -0.05 0.14 -0.04 -0.35  0.22 347.38 1.00
#>    202 -0.02 0.23 -0.04 -0.43  0.56  52.30 1.02
#>    203  0.01 0.24 -0.02 -0.42  0.63  36.96 1.03
#>    204  0.03 0.25  0.00 -0.42  0.67  28.53 1.04
#>    205  0.04 0.25  0.01 -0.40  0.69  24.37 1.05

plot(fit.fc, askNewPage = FALSE, type = "var")

plot(fit.fc, askNewPage = FALSE, type = "cor")

Example 2: Stocks

Here we use the first 100 days (we only base our analyses on 100 days to reduce wait time – this is not meant to be a serious analysis) of Stata’s stocks data on daily returns of three Japanese automakers, Toyota, Nissan, and Honda.

library(bmgarch)

data(stocks)
head(stocks)
#>         date t       toyota       nissan        honda
#> 1 2003-01-02 1  0.015167475  0.029470444  0.031610250
#> 2 2003-01-03 2  0.004820108  0.008173466  0.002679110
#> 3 2003-01-06 3  0.019958735  0.013064146 -0.001606464
#> 4 2003-01-07 4 -0.013322592 -0.007444382 -0.011317968
#> 5 2003-01-08 5 -0.027001143 -0.018856525 -0.016944885
#> 6 2003-01-09 6  0.011634588  0.016986847  0.013687611

Ease computation by first standardizing the time series

stocks.z <- scale(stocks[,c("toyota", "nissan", "honda")])
head(stocks.z )
#>       toyota     nissan       honda
#> 1  0.8151655  1.3417896  1.52836901
#> 2  0.2517820  0.3687089  0.11213515
#> 3  1.0760354  0.5921691 -0.09765177
#> 4 -0.7360344 -0.3448866 -0.57304819
#> 5 -1.4807910 -0.8663191 -0.84849638
#> 6  0.6228102  0.7714013  0.65102202

# Fit CCC(1, 1) with constant on the mean structure.
fit1 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
                parameterization = "CCC",
                iterations = 1000,
                P = 1, Q = 1,
                distribution = "Student_t",
                meanstructure = "constant")
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.

Parameter Estimates

summary( fit1 )
#> Model: CCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#>  diag(D_t) = sqrt(h_[ii,t]) = c_h + a_h*y^2_[t-1] + b_h*h_[ii, t-1
#> 
#> Sampling Algorithm:  MCMC
#> Distribution:  Student_t
#> ---
#> Iterations:  1000
#> Chains:  4
#> Date:  Wed Nov 17 10:44:01 2021
#> Elapsed time (min):  0.9
#> 
#> GARCH(1,1)  estimates for conditional variance:
#> 
#>            mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> a_h_1,ty   0.10 0.09 0.08 0.00  0.35 1888.57    1
#> a_h_1,ns   0.08 0.07 0.06 0.00  0.26 2189.46    1
#> a_h_1,hn   0.10 0.08 0.09 0.00  0.29 2391.91    1
#> b_h_1,ty   0.45 0.18 0.46 0.10  0.77 1271.23    1
#> b_h_1,ns   0.37 0.19 0.35 0.06  0.76 1155.06    1
#> b_h_1,hn   0.39 0.18 0.38 0.09  0.75 1483.92    1
#> c_h_var_ty 0.29 0.12 0.27 0.10  0.56 1216.38    1
#> c_h_var_ns 0.36 0.13 0.36 0.11  0.63 1453.76    1
#> c_h_var_hn 0.45 0.16 0.43 0.16  0.78 1430.93    1
#> 
#> 
#> Constant correlation (R) coefficients:
#> 
#>         mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> R_ns-ty 0.65 0.06 0.65 0.51  0.75 2407.81    1
#> R_hn-ty 0.73 0.05 0.74 0.63  0.82 2453.44    1
#> R_hn-ns 0.64 0.07 0.65 0.50  0.75 2556.38    1
#> 
#> 
#> Intercept estimates on the location:
#> 
#>                     mean   sd   mdn  2.5% 97.5%   n_eff Rhat
#> (Intercept)_toyota -0.09 0.08 -0.09 -0.24  0.07 1361.84    1
#> (Intercept)_nissan -0.01 0.08  0.00 -0.16  0.15 1623.28    1
#> (Intercept)_honda  -0.02 0.09 -0.02 -0.20  0.17 1510.14    1
#> 
#> 
#> Df constant student_t (nu):
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#>   32.89   24.58   25.80    7.20   98.90 2315.62    1.00 
#> 
#> 
#> Log density posterior estimate:
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#> -178.38    5.17 -177.93 -189.56 -169.32  726.13    1.00

Forecasted Values

Forecast volatility 10 days ahead

fc <- forecast(fit1, ahead = 10 )
fc
#> ---
#> [Variance] Forecast for 10 ahead:
#> 
#> toyota :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    101 0.54 0.11 0.53 0.34  0.78 1990.87    1
#>    102 0.58 0.16 0.56 0.35  0.91 1912.86    1
#>    103 0.61 0.22 0.58 0.36  1.06 2128.36    1
#>    104 0.63 0.23 0.59 0.36  1.13 2070.43    1
#>    105 0.64 0.24 0.60 0.37  1.15 2011.56    1
#>    106 0.65 0.30 0.60 0.37  1.27 2122.41    1
#>    107 0.66 0.49 0.61 0.37  1.33 1982.69    1
#>    108 0.67 0.33 0.61 0.38  1.40 1965.65    1
#>    109 0.67 0.34 0.61 0.38  1.36 1953.30    1
#>    110 0.67 0.29 0.62 0.39  1.36 1777.40    1
#> nissan :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    101 0.61 0.11 0.60 0.43  0.84 2199.41    1
#>    102 0.64 0.16 0.62 0.43  1.01 2165.82    1
#>    103 0.66 0.19 0.63 0.43  1.15 2258.04    1
#>    104 0.67 0.19 0.63 0.43  1.16 2218.87    1
#>    105 0.67 0.20 0.63 0.43  1.16 2160.20    1
#>    106 0.67 0.21 0.63 0.43  1.20 2097.01    1
#>    107 0.67 0.23 0.63 0.43  1.17 2093.49    1
#>    108 0.68 0.27 0.64 0.43  1.20 1662.11    1
#>    109 0.68 0.27 0.64 0.43  1.26 2134.24    1
#>    110 0.68 0.24 0.64 0.43  1.26 2095.73    1
#> honda :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    101 0.77 0.14 0.76 0.52  1.07 2113.58    1
#>    102 0.83 0.22 0.79 0.53  1.36 1926.71    1
#>    103 0.86 0.27 0.81 0.54  1.45 2023.81    1
#>    104 0.89 0.34 0.83 0.54  1.61 1781.57    1
#>    105 0.90 0.35 0.84 0.54  1.67 1921.87    1
#>    106 0.92 0.43 0.84 0.54  1.74 1773.26    1
#>    107 0.92 0.47 0.85 0.55  1.68 2081.64    1
#>    108 0.92 0.39 0.84 0.55  1.80 2181.67    1
#>    109 0.93 0.46 0.85 0.55  1.78 2044.45    1
#>    110 0.93 0.39 0.85 0.55  1.78 2023.25    1

plot(fc,askNewPage = FALSE, type = 'var' )

Ensemble Methods

Here we illustrate how to obtain model weights across three models. These weights will be used to compute weighted forecasts, thus, taking into account that we do not have a single best model.

Add two additional models, one with CCC(2,2) and a DCC(1,1)

# Fit CCC(1, 1) with constant on the mean structure.
fit2 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
                parameterization = "CCC",
                iterations = 1000,
                P = 2, Q = 2,
                distribution = "Student_t",
                meanstructure = "constant")
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.

fit3 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
                parameterization = "DCC",
                iterations = 1000,
                P = 1, Q = 1,
                distribution = "Student_t",
                meanstructure = "arma")
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.

The DCC(1,1) model also incorporates an ARMA(1,1) meanstructure. The output will have the according information:

summary( fit3 )
#> Model: DCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#>  diag(D_t) = sqrt(h_ii,t) = c_h + a_h*y^2_[t-1] + b_h*h_[ii,t-1]
#>  R_t = Q^[-1]_t Q_t Q^[-1]_t = ( 1 - a_q - b_q)S + a_q(u_[t-1]u'_[t-1]) + b_q(Q_[t-1])
#> 
#> Sampling Algorithm:  MCMC
#> Distribution:  Student_t
#> ---
#> Iterations:  1000
#> Chains:  4
#> Date:  Wed Nov 17 11:00:01 2021
#> Elapsed time (min):  14.73
#> 
#> GARCH(1,1)  estimates for conditional variance on D:
#> 
#>            mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> a_h_1,ty   0.17 0.14 0.14 0.01  0.52 1056.07 1.01
#> a_h_1,ns   0.10 0.09 0.08 0.00  0.34 1189.77 1.00
#> a_h_1,hn   0.13 0.11 0.11 0.01  0.41 1284.85 1.00
#> b_h_1,ty   0.44 0.17 0.45 0.11  0.74  906.44 1.00
#> b_h_1,ns   0.41 0.20 0.39 0.08  0.82  692.83 1.00
#> b_h_1,hn   0.46 0.19 0.47 0.10  0.83  885.63 1.00
#> c_h_var_ty 0.28 0.12 0.26 0.10  0.54  935.88 1.00
#> c_h_var_ns 0.32 0.13 0.32 0.09  0.58  719.80 1.00
#> c_h_var_hn 0.38 0.16 0.36 0.11  0.72  813.64 1.00
#> 
#> 
#> GARCH(1,1) estimates for conditional variance on Q:
#> 
#>     mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> a_q 0.21 0.10 0.20 0.04  0.44 1040.20 1.01
#> b_q 0.23 0.15 0.21 0.01  0.57  927.87 1.01
#> 
#> 
#> Unconditional correlation 'S' in Q:
#> 
#>         mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> S_ns-ty 0.60 0.09 0.61 0.40  0.75 1063.10 1.00
#> S_hn-ty 0.73 0.07 0.74 0.58  0.84  951.12 1.01
#> S_hn-ns 0.63 0.08 0.63 0.45  0.77 1496.51 1.00
#> 
#> 
#> ARMA(1,1) estimates on the location:
#> 
#>                      mean   sd   mdn  2.5% 97.5%  n_eff Rhat
#> (Intercept)_toyota  -0.08 0.09 -0.08 -0.26  0.08 792.13 1.00
#> (Intercept)_nissan   0.01 0.10  0.01 -0.20  0.19 663.45 1.00
#> (Intercept)_honda   -0.03 0.12 -0.02 -0.27  0.20 644.99 1.00
#> Phi_toyota-toyota    0.01 0.36  0.02 -0.69  0.68 528.60 1.02
#> Phi_toyota-nissan    0.02 0.39  0.03 -0.70  0.78 609.47 1.01
#> Phi_toyota-honda     0.15 0.36  0.16 -0.57  0.87 343.72 1.01
#> Phi_nissan-toyota    0.27 0.41  0.32 -0.66  0.91 399.28 1.01
#> Phi_nissan-nissan   -0.15 0.38 -0.17 -0.82  0.64 712.58 1.01
#> Phi_nissan-honda     0.13 0.41  0.16 -0.76  0.85 446.08 1.01
#> Phi_honda-toyota    -0.27 0.40 -0.29 -0.94  0.53 558.23 1.01
#> Phi_honda-nissan     0.14 0.43  0.15 -0.70  0.91 623.26 1.00
#> Phi_honda-honda     -0.09 0.35 -0.07 -0.76  0.61 665.98 1.00
#> Theta_toyota-toyota -0.11 0.39 -0.14 -0.83  0.69 416.69 1.02
#> Theta_toyota-nissan  0.12 0.39  0.13 -0.65  0.82 578.37 1.01
#> Theta_toyota-honda  -0.13 0.36 -0.14 -0.82  0.57 370.93 1.01
#> Theta_nissan-toyota -0.27 0.42 -0.34 -0.92  0.71 384.55 1.01
#> Theta_nissan-nissan  0.16 0.36  0.18 -0.60  0.80 715.11 1.01
#> Theta_nissan-honda  -0.18 0.40 -0.18 -0.93  0.65 435.38 1.01
#> Theta_honda-toyota   0.00 0.40  0.00 -0.78  0.73 701.92 1.00
#> Theta_honda-nissan  -0.02 0.45 -0.03 -0.85  0.86 584.20 1.00
#> Theta_honda-honda    0.21 0.39  0.21 -0.57  0.91 675.18 1.00
#> 
#> 
#> Df constant student_t (nu):
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#>   44.50   28.32   37.82    9.43  112.97 1642.00    1.00 
#> 
#> 
#> Log density posterior estimate:
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#> -177.52    5.99 -177.18 -190.23 -167.03  502.29    1.00
fc <- forecast(fit3, ahead =  10)

plot( fc,askNewPage = FALSE, type =  'mean' ) 

Compute Model Weights

Obtain model weights with either the stacking or the pseudo BMA method. These methods are inherited from the loo package.

First, gather models to a bmgarch_list.

## use bmgarch_list function to collect bmgarch objects
modfits <- bmgarch_list(fit1, fit2, fit3)

Compute model weights with the stacking method (default) and the approximate (default) leave-future-out cross validation (LFO CV). L defines the minimal length of the time series before we start engaging in cross-validation. Eg., for a time series with length 100, L = 50 reserves values 51–100 as the cross-validation sample. Note that the standard is to use the approximate backward method to CV as it results in fewest refits. Exact CV is also available with exact but not encouraged as it results in refitting all CV models.

mw <- model_weights(modfits, L = 50, method = 'stacking')
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> Using threshold  0.6 , model was refit  5  times, at observations 84 77 71 63 51 
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> Using threshold  0.6 , model was refit  3  times, at observations 73 65 61 
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'DCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> Using threshold  0.6 , model was refit  9  times, at observations 87 84 79 75 74 72 63 60 51

## Return model weights:
mw
#> Method: stacking
#> ------
#>        weight
#> model1 0.219 
#> model2 0.781 
#> model3 0.000

Weighted Forecasting

Use model weights to obtain weighted forecasts. Here we will forecast 5 days ahead.

w_fc <- forecast(modfits, ahead = 5, weights = mw )
w_fc
#> ---
#> LFO-weighted forecasts across  3 models.
#> ---
#> [Mean] Forecast for 5 ahead:
#> 
#> toyota :
#>       
#> period  mean   sd   mdn  2.5% 97.5% n_eff Rhat
#>    101 -0.08 0.62 -0.08 -1.29  1.13    NA   NA
#>    102 -0.10 0.62 -0.09 -1.40  1.10    NA   NA
#>    103 -0.09 0.66 -0.10 -1.36  1.23    NA   NA
#>    104 -0.12 0.69 -0.11 -1.56  1.18    NA   NA
#>    105 -0.10 0.68 -0.11 -1.49  1.20    NA   NA
#> nissan :
#>       
#> period  mean   sd   mdn  2.5% 97.5% n_eff Rhat
#>    101  0.03 0.68  0.04 -1.33  1.38    NA   NA
#>    102  0.00 0.67  0.01 -1.32  1.34    NA   NA
#>    103 -0.01 0.70  0.00 -1.34  1.38    NA   NA
#>    104 -0.03 0.72 -0.02 -1.42  1.39    NA   NA
#>    105 -0.04 0.72 -0.04 -1.47  1.32    NA   NA
#> honda :
#>       
#> period  mean   sd   mdn  2.5% 97.5% n_eff Rhat
#>    101 -0.02 0.75  0.00 -1.51  1.41    NA   NA
#>    102 -0.05 0.76 -0.04 -1.59  1.44    NA   NA
#>    103 -0.02 0.81 -0.01 -1.67  1.51    NA   NA
#>    104 -0.06 0.83 -0.05 -1.70  1.56    NA   NA
#>    105 -0.05 0.83 -0.04 -1.71  1.58    NA   NA
#> ---
#> [Variance] Forecast for 5 ahead:
#> 
#> toyota :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.53 0.09 0.52 0.37  0.72    NA   NA
#>    102 0.55 0.11 0.54 0.37  0.79    NA   NA
#>    103 0.59 0.15 0.57 0.39  0.94    NA   NA
#>    104 0.61 0.17 0.58 0.40  1.00    NA   NA
#>    105 0.63 0.22 0.59 0.40  1.12    NA   NA
#> nissan :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.63 0.09 0.62 0.47  0.83    NA   NA
#>    102 0.64 0.11 0.63 0.47  0.87    NA   NA
#>    103 0.66 0.13 0.64 0.47  0.94    NA   NA
#>    104 0.66 0.14 0.64 0.46  0.98    NA   NA
#>    105 0.68 0.16 0.66 0.47  1.01    NA   NA
#> honda :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.78 0.12 0.77 0.57  1.03    NA   NA
#>    102 0.79 0.15 0.78 0.55  1.14    NA   NA
#>    103 0.86 0.22 0.82 0.58  1.43    NA   NA
#>    104 0.88 0.27 0.83 0.57  1.48    NA   NA
#>    105 0.91 0.32 0.84 0.59  1.62    NA   NA
#> [Correlation] Forecast for 5 ahead:
#> 
#> nissan_toyota :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.65 0.05 0.65 0.54  0.74    NA   NA
#>    102 0.65 0.05 0.65 0.54  0.74    NA   NA
#>    103 0.65 0.05 0.65 0.54  0.74    NA   NA
#>    104 0.65 0.05 0.65 0.54  0.74    NA   NA
#>    105 0.65 0.05 0.65 0.54  0.74    NA   NA
#> honda_toyota :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.73 0.04 0.74 0.64   0.8    NA   NA
#>    102 0.73 0.04 0.74 0.64   0.8    NA   NA
#>    103 0.73 0.04 0.74 0.64   0.8    NA   NA
#>    104 0.73 0.04 0.74 0.64   0.8    NA   NA
#>    105 0.73 0.04 0.74 0.64   0.8    NA   NA
#> honda_nissan :
#>       
#> period mean   sd  mdn 2.5% 97.5% n_eff Rhat
#>    101 0.64 0.06 0.64 0.52  0.74    NA   NA
#>    102 0.64 0.06 0.64 0.52  0.74    NA   NA
#>    103 0.64 0.06 0.64 0.52  0.74    NA   NA
#>    104 0.64 0.06 0.64 0.52  0.74    NA   NA
#>    105 0.64 0.06 0.64 0.52  0.74    NA   NA

Plot the weighted forecast. Save plots into a ggplot object and post-process

plt <- plot(w_fc, askNewPage = FALSE, type =  'var' )

library( patchwork )
( plt$honda  + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) ) /
( plt$toyota + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) ) /
( plt$nissan + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) ) 
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.

Predictors for Constant Variance (C)

We can add predictors for the constant variance term, c or C, in the MGARCH model with the option xC = The predictors need to be of the same dimension as the time-series object. For example, with three time-series of length 100, the predictor needs to be entered as a 100 by 3 matrix as well.

To illustrate, we will add nissan as the predictor for C in a bivariate MGARCH:

# Fit CCC(1, 1) with constant on the mean structure.
fitx <- bmgarch(stocks.z[1:100, c("toyota", "honda")],
                xC = stocks.z[1:100, c("nissan", "nissan")],
                parameterization = "CCC",
                iterations = 1000,
                P = 2, Q = 2,
                distribution = "Student_t",
                meanstructure = "constant")
#> 
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#> 
#> COMPILING MODEL 'CCCMGARCH' NOW.
#> 
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.

The estimates for the predictors for C are on a log scale in section Exogenous predictor:

summary(fitx)
#> Model: CCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#>  diag(D_t) = sqrt(h_[ii,t]) = c_h + a_h*y^2_[t-1] + b_h*h_[ii, t-1
#> 
#> Sampling Algorithm:  MCMC
#> Distribution:  Student_t
#> ---
#> Iterations:  1000
#> Chains:  4
#> Date:  Wed Nov 17 12:45:10 2021
#> Elapsed time (min):  0.65
#> 
#> GARCH(2,2)  estimates for conditional variance:
#> 
#>            mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> a_h_1,ty   0.09 0.09 0.06 0.00  0.34 1668.39    1
#> a_h_1,hn   0.08 0.08 0.05 0.00  0.29 1947.72    1
#> a_h_2,ty   0.10 0.09 0.07 0.00  0.34 1700.01    1
#> a_h_2,hn   0.12 0.12 0.08 0.00  0.46 1967.79    1
#> b_h_1,ty   0.20 0.16 0.17 0.01  0.58 2104.55    1
#> b_h_1,hn   0.18 0.15 0.14 0.01  0.57 1935.18    1
#> b_h_2,ty   0.26 0.17 0.24 0.01  0.63 1417.28    1
#> b_h_2,hn   0.19 0.17 0.15 0.01  0.62 1510.62    1
#> c_h_var_ty 0.22 0.10 0.21 0.07  0.46 1083.03    1
#> c_h_var_hn 0.40 0.16 0.39 0.12  0.73 1326.13    1
#> 
#> 
#> Constant correlation (R) coefficients:
#> 
#>         mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#> R_hn-ty 0.73 0.05 0.73 0.61  0.82 2754.98    1
#> 
#> 
#> Intercept estimates on the location:
#> 
#>                     mean   sd   mdn  2.5% 97.5%   n_eff Rhat
#> (Intercept)_toyota -0.09 0.08 -0.09 -0.24  0.07 1594.49    1
#> (Intercept)_honda  -0.05 0.09 -0.04 -0.23  0.13 1562.95    1
#> 
#> 
#> Exogenous predictor (beta1 on log scale: c = exp( beta_0 + beta_1*x ):
#> 
#>           mean   sd   mdn  2.5% 97.5%   n_eff Rhat
#> beta0_ty -1.60 0.48 -1.57 -2.60 -0.77 1041.88    1
#> beta0_hn -1.02 0.47 -0.95 -2.11 -0.32 1062.03    1
#> beta_ty  -0.20 0.38 -0.20 -0.92  0.58 1729.13    1
#> beta_hn   0.04 0.32  0.06 -0.66  0.62 1600.12    1
#> 
#> 
#> Df constant student_t (nu):
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#>   45.76   28.88   39.73    8.86  115.81 2730.22    1.00 
#> 
#> 
#> Log density posterior estimate:
#> 
#>    mean      sd     mdn    2.5%   97.5%   n_eff    Rhat 
#> -130.18    4.27 -129.61 -139.72 -123.15  674.02    1.01

The predictor results in a linear model (on the log scale) with an intercept β0 and the effect of the predictor in the slope β1.

We can generate forecasts given the known values of the predictor. Note that the dimension of the predictor needs to match the number of timepoints that we predict ahead and the number of variables, 5 by 2, in this example:

fc2x <- forecast(fitx, ahead = 5, xC = stocks.z[101:105, c("nissan", "nissan")])
fc2x
#> ---
#> [Variance] Forecast for 5 ahead:
#> 
#> toyota :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    101 0.46 0.11 0.45 0.28  0.69 1719.39    1
#>    102 0.47 0.16 0.45 0.24  0.82 1923.14    1
#>    103 0.51 0.23 0.48 0.23  0.96 1826.61    1
#>    104 0.54 0.29 0.50 0.25  1.07 1918.53    1
#>    105 0.57 0.27 0.52 0.27  1.18 2027.23    1
#> honda :
#>       
#> period mean   sd  mdn 2.5% 97.5%   n_eff Rhat
#>    101 0.77 0.15 0.76 0.52  1.11 1591.70    1
#>    102 0.79 0.24 0.76 0.43  1.35 1851.16    1
#>    103 0.88 0.34 0.82 0.45  1.82 1929.33    1
#>    104 0.88 0.36 0.82 0.44  1.72 1992.89    1
#>    105 0.92 0.51 0.83 0.46  2.10 2073.26    1

Variational Approximation

The package features the option to use Stan’s variational Bayes (sampling_algorithm = "VB") algorithm. Currently, this feature is lagging behind CmdStan’s version and is considered to be experimental and mostly a placeholder for future improvements.

Community Guidelines

  1. Contributions and suggestions to the software are always welcome. Please consult our contribution guidelines prior to submitting a pull request.
  2. Report issues or problems with the software using github’s issue tracker.
  3. Contributors must adhere to the Code of Conduct.

Acknowledgment

This work was supported by the National Institute On Aging of the National Institutes of Health under Award Number R01AG050720 to PR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.