The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

bnclassify

CRAN_Status_Badge Research software impact codecov.io R-CMD-check

Implements algorithms for learning discrete Bayesian network classifiers from data, as well as functions for using these classifiers for prediction, assessing their predictive performance, and inspecting and analyzing their properties.

Example

Load a data set and learn a one-dependence estimator by maximizing Akaike’s information criterion (AIC) score.

library(bnclassify)
data(car)
tn <- tan_cl('class', car, score = 'aic')
tn
#> 
#>   Bayesian network classifier (only structure, no parameters)
#> 
#>   class variable:        class 
#>   num. features:   6 
#>   num. arcs:   9 
#>   learning algorithm:    tan_cl
plot(tn)

After learning the network’s parameters, you can use it to classify data.

tn <- lp(tn, car, smooth = 0.01)
p <- predict(tn, car, prob = TRUE)
head(p)
#>      unacc          acc         good        vgood
#> [1,]     1 3.963694e-09 5.682130e-09 4.269700e-09
#> [2,]     1 1.752769e-09 3.310473e-12 3.236335e-09
#> [3,]     1 3.730170e-09 1.090296e-08 1.800719e-12
#> [4,]     1 3.963694e-09 5.682130e-09 4.269700e-09
#> [5,]     1 4.562294e-09 6.965323e-09 4.536532e-09
#> [6,]     1 4.281155e-09 5.366306e-09 5.168828e-09
p <- predict(tn, car, prob = FALSE)
head(p)
#> [1] unacc unacc unacc unacc unacc unacc
#> Levels: unacc acc good vgood

Estimate predictive accuracy with cross validation.

cv(tn, car, k = 10)
#> [1] 0.9386641

Or compute the log-likelihood

logLik(tn, car)
#> 'log Lik.' -13280.39 (df=131)

Install

Make sure you have at least version 3.2.0 of R. You can install bnclassify from CRAN:

install.packages('bnclassify')

Or get the current development version from Github:

# install.packages('devtools')
devtools::install_github('bmihaljevic/bnclassify')
# devtools::install_github('bmihaljevic/bnclassify', build_vignettes = TRUE)

Ideally, you would use the build_vignettes = TRUE version, and thus get the vignettes, but it requires programs such as texi2dvi to be installed on your side.

Overview

See an overview of the package and examples of usage:

vignette('overview', package = 'bnclassify')
#> Warning: vignette 'overview' not found

See the list of main functionalities.

?bnclassify

Use the usage vignette for more details on the functions.

vignette('usage', package = 'bnclassify')

Then have a look at the remaining vignettes.

browseVignettes("bnclassify")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.