The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(bregr)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
if (!requireNamespace("UCSCXenaShiny")) {
install.packages("UCSCXenaShiny")
}
#> Loading required namespace: UCSCXenaShiny
library(UCSCXenaShiny)
#> =========================================================================================
#> UCSCXenaShiny version 2.1.0
#> Project URL: https://github.com/openbiox/UCSCXenaShiny
#> Usages: https://openbiox.github.io/UCSCXenaShiny/
#>
#> If you use it in published research, please cite:
#> Shixiang Wang, Yi Xiong, Longfei Zhao, Kai Gu, Yin Li, Fei Zhao, Jianfeng Li,
#> Mingjie Wang, Haitao Wang, Ziyu Tao, Tao Wu, Yichao Zheng, Xuejun Li, Xue-Song Liu,
#> UCSCXenaShiny: An R/CRAN Package for Interactive Analysis of UCSC Xena Data,
#> Bioinformatics, 2021;, btab561, https://doi.org/10.1093/bioinformatics/btab561.
#> =========================================================================================
#> --Enjoy it--
UCSCXenaShiny offers extensive builtin cancer datasets and data query functions to facilitate analysis and visualization.
data <- inner_join(
tcga_clinical_fine,
tcga_surv |> select(sample, OS, OS.time),
by = c("Sample" = "sample")
) |> filter(!is.na(Stage_ajcc), !is.na(Gender))
head(data)
#> # A tibble: 6 × 10
#> Sample Cancer Age Code Gender Stage_ajcc Stage_clinical Grade OS OS.time
#> <chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 TCGA-… ACC 58 TP MALE Stage II <NA> <NA> 1 1355
#> 2 TCGA-… ACC 44 TP FEMALE Stage IV <NA> <NA> 1 1677
#> 3 TCGA-… ACC 23 TP FEMALE Stage III <NA> <NA> 0 2091
#> 4 TCGA-… ACC 30 TP MALE Stage III <NA> <NA> 1 365
#> 5 TCGA-… ACC 29 TP FEMALE Stage II <NA> <NA> 0 2703
#> 6 TCGA-… ACC 30 TP FEMALE Stage III <NA> <NA> 1 490
Assessing the influence of AJCC Stage on overall survival can be done by analyzing data grouped by gender.
m <- br_pipeline(
data = data,
y = c("OS.time", "OS"),
x = "Stage_ajcc", x2 = "Age",
group_by = "Gender",
method = "coxph"
)
#> exponentiate estimates of model(s) constructed from coxph method at default
m
#> an object of <breg> class with slots:
#> • y (response variable): OS.time and OS
#> • x (focal term): Stage_ajcc
#> • x2 (control term): Age
#> • group_by: Gender
#> • data: <tibble[,11]>
#> • config: <list: method = "coxph", extra = "">
#> • models: <list: FEMALE_Stage_ajcc = <coxph>, MALE_Stage_ajcc = <coxph>, and
#> All_Stage_ajcc = <coxph>>
#> • results: <tibble[,22]> with colnames Group_variable, Focal_variable, term,
#> variable, var_label, var_class, var_type, var_nlevels, contrasts,
#> contrasts_type, reference_row, label, n_obs, n_ind, n_event, exposure,
#> estimate, std.error, …, conf.low, and conf.high
#> • results_tidy: <tibble[,9]> with colnames Group_variable, Focal_variable,
#> term, estimate, std.error, statistic, p.value, conf.low, and conf.high
#>
#> Focal term(s) are injected into the model one by one,
#> while control term(s) remain constant across all models in the batch.
Group_variable | Focal_variable | term | estimate | std.error | statistic | p.value | conf.low | conf.high |
---|---|---|---|---|---|---|---|---|
FEMALE | Stage_ajcc | Stage_ajccStage II | 1.273682 | 0.0959397 | 2.521499 | 0.0116856 | 1.055351 | 1.537181 |
FEMALE | Stage_ajcc | Stage_ajccStage III | 2.149478 | 0.0967063 | 7.912875 | 0.0000000 | 1.778347 | 2.598062 |
FEMALE | Stage_ajcc | Stage_ajccStage IV | 5.178744 | 0.1081300 | 15.209118 | 0.0000000 | 4.189710 | 6.401251 |
FEMALE | Stage_ajcc | Age | 1.035787 | 0.0025991 | 13.528430 | 0.0000000 | 1.030524 | 1.041077 |
MALE | Stage_ajcc | Stage_ajccStage II | 1.768884 | 0.0833656 | 6.841537 | 0.0000000 | 1.502237 | 2.082861 |
MALE | Stage_ajcc | Stage_ajccStage III | 2.235855 | 0.0811756 | 9.912137 | 0.0000000 | 1.906983 | 2.621443 |
MALE | Stage_ajcc | Stage_ajccStage IV | 3.379213 | 0.0849960 | 14.325886 | 0.0000000 | 2.860664 | 3.991759 |
MALE | Stage_ajcc | Age | 1.029710 | 0.0023311 | 12.559176 | 0.0000000 | 1.025016 | 1.034425 |
All | Stage_ajcc | Stage_ajccStage II | 1.468986 | 0.0628836 | 6.115624 | 0.0000000 | 1.298647 | 1.661668 |
All | Stage_ajcc | Stage_ajccStage III | 2.193520 | 0.0621347 | 12.642015 | 0.0000000 | 1.942014 | 2.477597 |
All | Stage_ajcc | Stage_ajccStage IV | 4.014838 | 0.0665694 | 20.880417 | 0.0000000 | 3.523741 | 4.574377 |
All | Stage_ajcc | Age | 1.033083 | 0.0017248 | 18.869895 | 0.0000000 | 1.029596 | 1.036581 |
For example:
m <- br_rename_models(m, c("Female", "Male", "All"))
#> rename model names from "FEMALE_Stage_ajcc", "MALE_Stage_ajcc", and
#> "All_Stage_ajcc" to "Female", "Male", and "All"
br_show_forest_ggstats(m)
Besides, using tcga_surv_get()
, you can efficiently
retrieve values for a specified gene
(c("mRNA", "miRNA", "methylation", "transcript", "protein", "mutation", "cnv")
)
from the TCGA cohort.
For more comprehensive guidance on querying various omics data from different databases/cohorts, refer to the Molecular Data Query section of the UCSCXenaShiny tutorial book.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.