The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The brglm2 R
package provides brmultinom()
which is a wrapper of
brglmFit
for fitting multinomial logistic regression models
(a.k.a. baseline category logit models) using either maximum likelihood
or maximum penalized likelihood or any of the various bias reduction
methods described in brglmFit()
. brmultinom()
uses the equivalent Poisson log-linear model, by appropriately
re-scaling the Poisson means to match the multinomial totals (a.k.a. the
“Poisson trick”). The mathematical details and algorithm on using the
Poisson trick for mean-bias reduction are given in Kosmidis and Firth (2011).
This vignettes illustrates the use of brmultinom()
and
of the associated methods, using the alligator food choice example in
Agresti (2002, sec. 7.1)
The alligator data set ships with brglm2. Agresti (2002, sec. 7.1) provides a detailed description of the variables recorded in the data set.
The following chunk of code reproduces Agresti (2002, Table 7.4). Note that in order to get the estimates and standard errors reported in the latter table, we have to explicitly specify the contrasts that Agresti (2002) uses.
agresti_contrasts <- list(lake = contr.treatment(levels(alligators$lake), base = 4),
size = contr.treatment(levels(alligators$size), base = 2))
all_ml <- brmultinom(foodchoice ~ size + lake , weights = freq,
data = alligators,
contrasts = agresti_contrasts,
ref = 1,
type = "ML")
all_ml_summary <- summary(all_ml)
## Estimated regression parameters
round(all_ml_summary$coefficients, 2)
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.55 1.46 -1.66 0.94 1.12
#> Reptile -3.31 -0.35 1.24 2.46 2.94
#> Bird -2.09 -0.63 0.70 -0.65 1.09
#> Other -1.90 0.33 0.83 0.01 1.52
## Estimated standard errors
round(all_ml_summary$standard.errors, 2)
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.42 0.40 0.61 0.47 0.49
#> Reptile 1.05 0.58 1.19 1.12 1.12
#> Bird 0.66 0.64 0.78 1.20 0.84
#> Other 0.53 0.45 0.56 0.78 0.62
Fitting the model using mean-bias reducing adjusted score equations gives
all_mean <- update(all_ml, type = "AS_mean")
summary(all_mean)
#> Call:
#> brmultinom(formula = foodchoice ~ size + lake, data = alligators,
#> weights = freq, contrasts = agresti_contrasts, ref = 1, type = "AS_mean")
#>
#> Coefficients:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.490818 1.4019624 -1.5600445 0.90109748 1.081322
#> Reptile -2.908819 -0.3209487 0.9800182 2.10269205 2.559008
#> Bird -1.940190 -0.5828768 0.6213169 -0.41459453 1.026221
#> Other -1.815225 0.3147753 0.7792789 0.06001729 1.450717
#>
#> Std. Errors:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.4250711 0.3962267 0.6003569 0.4742043 0.4924905
#> Reptile 0.8864071 0.5565974 1.0218118 0.9619417 0.9604963
#> Bird 0.6276892 0.6084642 0.7436454 1.0458118 0.8031649
#> Other 0.5177641 0.4443760 0.5521476 0.7489610 0.6154619
#>
#> Residual Deviance: 540.8142
#> Log-likelihood: -270.4071
#> AIC: 580.8142
#>
#> Type of estimator: AS_mean (mean bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 20
The corresponding fit using median-bias reducing adjusted score equations is
all_median <- update(all_ml, type = "AS_median")
summary(all_median)
#> Call:
#> brmultinom(formula = foodchoice ~ size + lake, data = alligators,
#> weights = freq, contrasts = agresti_contrasts, ref = 1, type = "AS_median")
#>
#> Coefficients:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.508934 1.4134512 -1.6080461 0.90952486 1.090687
#> Reptile -3.128931 -0.3379387 1.1208787 2.28462590 2.743766
#> Bird -2.018328 -0.6036652 0.6554327 -0.55207076 1.044909
#> Other -1.854740 0.3201676 0.8002874 0.02330188 1.469440
#>
#> Std. Errors:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.4238148 0.3949248 0.6066348 0.4720116 0.4901870
#> Reptile 0.9729317 0.5699878 1.1068113 1.0427073 1.0411046
#> Bird 0.6449317 0.6254237 0.7621085 1.1250548 0.8221610
#> Other 0.5208087 0.4456384 0.5538846 0.7614315 0.6170972
#>
#> Residual Deviance: 540.2445
#> Log-likelihood: -270.1223
#> AIC: 580.2445
#>
#> Type of estimator: AS_median (median bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 9
The estimates and the estimated standard errors from bias reduction are close to those for maximum likelihood. As a result, it is unlikely that either mean or median bias is of any real consequence for this particular model and data combination.
Let’s scale the frequencies in alligators
by 3 in order
to get a sparser data set. The differences between maximum likelihood
and mean and median bias reduction should be more apparent on the
resulting data set. Here we have to “slow-down” the Fisher scoring
iteration (by scaling the step-size), because otherwise the Fisher
information matrix quickly gets numerically rank-deficient. The reason
is data separation (Albert and Anderson
1984).
all_ml_sparse <- update(all_ml, weights = round(freq/3), slowit = 0.1)
#> Warning: brglmFit: algorithm did not converge. Try changing the optimization
#> algorithm defaults, e.g. the defaults for one or more of `maxit`, `epsilon`,
#> `slowit`, and `response_adjustment`; see `?brglm_control` for default values
#> and available options
summary(all_ml_sparse)
#> Call:
#> brmultinom(formula = foodchoice ~ size + lake, data = alligators,
#> weights = round(freq/3), contrasts = agresti_contrasts, ref = 1,
#> type = "ML", slowit = 0.1)
#>
#> Coefficients:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.892117 1.74080751 -1.7936496 0.96047783 1.0747116
#> Reptile -20.147831 -1.05673340 18.5968919 19.28937520 19.4244818
#> Bird -2.225759 -0.33405987 0.9538709 -17.82640619 0.6957762
#> Other -1.730365 0.04554623 1.1091441 -0.07652817 1.2070845
#>
#> Std. Errors:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.8042604 0.7409450 1.1883685 0.8431835 0.8917234
#> Reptile 8961.4328424 1.2808647 8961.4329000 8961.4328731 8961.4328758
#> Bird 1.1849748 1.1598538 1.3243541 9691.1869944 1.5455222
#> Other 0.8869382 0.7815002 0.9589614 1.3379641 1.0844370
#>
#> Residual Deviance: 161.913
#> Log-likelihood: -80.95651
#> AIC: 201.913
#>
#> Type of estimator: ML (maximum likelihood)
#> Number of Fisher Scoring iterations: 100
Specifically, judging from the estimated standard errors, the
estimates for (Intercept)
, lakeHancock
,
lakeOklawaha
and lakeTrafford
for
Reptile
and lakeHancock
for Bird
seem to be infinite.
To quickly check if that’s indeed the case we can use the
check_infinite_estimates()
method of the detectseparation
R package.
Some of the estimated standard errors diverge as the number of Fisher scoring iterations increases, which is evidence of complete or quasi-complete separation (Lesaffre and Albert 1989).
In contrast, both mean and median bias reduction result in finite estimates
all_mean_sparse <- update(all_ml_sparse, type = "AS_mean")
#> Warning: brglmFit: algorithm did not converge. Try changing the optimization
#> algorithm defaults, e.g. the defaults for one or more of `maxit`, `epsilon`,
#> `slowit`, and `response_adjustment`; see `?brglm_control` for default values
#> and available options
summary(all_mean_sparse)
#> Call:
#> brmultinom(formula = foodchoice ~ size + lake, data = alligators,
#> weights = round(freq/3), contrasts = agresti_contrasts, ref = 1,
#> type = "AS_mean", slowit = 0.1)
#>
#> Coefficients:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.679166 1.53865356 -1.4524459 0.8578547 0.9583248
#> Reptile -2.690142 -0.76139583 1.4034218 1.9746355 2.0975417
#> Bird -1.820489 -0.25358805 0.7182241 -0.5960054 0.6373495
#> Other -1.517520 0.04996741 0.9501188 0.0650087 1.0685650
#>
#> Std. Errors:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.7986891 0.7384924 1.0933475 0.8526695 0.9002981
#> Reptile 1.5495030 1.0465660 1.7628376 1.7032872 1.7165409
#> Bird 1.0387375 1.0051346 1.1808965 1.8023116 1.3550386
#> Other 0.8606603 0.7662525 0.9397836 1.2305932 1.0633025
#>
#> Residual Deviance: 164.8781
#> Log-likelihood: -82.43904
#> AIC: 204.8781
#>
#> Type of estimator: AS_mean (mean bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 100
all_median_sparse <- update(all_ml_sparse, type = "AS_median")
#> Warning: brglmFit: algorithm did not converge. Try changing the optimization
#> algorithm defaults, e.g. the defaults for one or more of `maxit`, `epsilon`,
#> `slowit`, and `response_adjustment`; see `?brglm_control` for default values
#> and available options
summary(all_median_sparse)
#> Call:
#> brmultinom(formula = foodchoice ~ size + lake, data = alligators,
#> weights = round(freq/3), contrasts = agresti_contrasts, ref = 1,
#> type = "AS_median", slowit = 0.1)
#>
#> Coefficients:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate -1.738082 1.57656100 -1.609922 0.87918464 0.9772042
#> Reptile -3.665205 -0.89723096 2.189606 2.82422096 2.9353768
#> Bird -1.991964 -0.28576535 0.809448 -1.37215072 0.6272446
#> Other -1.613287 0.04721269 1.008715 -0.01732907 1.1038820
#>
#> Std. Errors:
#> (Intercept) size<=2.3 lakeHancock lakeOklawaha lakeTrafford
#> Invertebrate 0.7922387 0.7310932 1.1339003 0.8411236 0.8888226
#> Reptile 2.4233320 1.1696060 2.5992946 2.5306117 2.5410958
#> Bird 1.0941201 1.0683064 1.2317597 2.5546837 1.4277810
#> Other 0.8695136 0.7700381 0.9449315 1.2711053 1.0676085
#>
#> Residual Deviance: 162.9524
#> Log-likelihood: -81.4762
#> AIC: 202.9524
#>
#> Type of estimator: AS_median (median bias-reducing adjusted score equations)
#> Number of Fisher Scoring iterations: 100
?brglmFit
and ?brglm_control
contain quick
descriptions of the various bias reduction methods supported in
brglm2. The iteration
vignette describes the iteration and gives the mathematical details for
the bias-reducing adjustments to the score functions for generalized
linear models.
If you found this vignette or brglm2, in general,
useful, please consider citing brglm2 and the
associated paper. You can find information on how to do this by typing
citation("brglm2")
.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.