The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This brunnermunzel
package is to perform (permuted)
Brunner-Munzel test for stochastic equality of two samples, which is
also known as the Generalized Wilcoxon test.
For Brunner-Munzel test (Brunner and Munzel 2000),
brunner.munzel.test
function in lawstat
package is very famous. This function is extended to enable to use
formula, matrix, and
table as an argument.
Also, the function brunnermunzel.permutation.test
for
permuted Brunner-Munzel test (Neubert and Brunner 2007) was provided.
brunnermunzel
packageIn this section, we will use sample data from Hollander & Wolfe (1973), 29f. – Hamilton depression scale factor measurements in 9 patients with mixed anxiety and depression, taken at the first (x) and second (y) visit after initiation of a therapy (administration of a tranquilizer)“.
<- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
x <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29) y
For formula interface, data was converted to
data.frame
.
<- data.frame(
dat value = c(x, y),
group = factor(rep(c("x", "y"), c(length(x), length(y))),
levels = c("x", "y")))
library(dplyr)
%>%
dat group_by(group) %>%
summarize_all(list(mean = mean, median = median))
#> # A tibble: 2 x 3
#> group mean median
#> <fct> <dbl> <dbl>
#> 1 x 1.77 1.68
#> 2 y 1.33 1.06
library(brunnermunzel)
brunnermunzel.test(x, y)
#>
#> Brunner-Munzel Test
#>
#> data: x and y
#> Brunner-Munzel Test Statistic = -1.4673, df = 15.147, p-value = 0.1628
#> 95 percent confidence interval:
#> -0.02962941 0.59753064
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.2839506
brunnermunzel.test(value ~ group, data = dat)
#>
#> Brunner-Munzel Test
#>
#> data: value by group
#> Brunner-Munzel Test Statistic = -1.4673, df = 15.147, p-value = 0.1628
#> 95 percent confidence interval:
#> -0.02962941 0.59753064
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.2839506
To perform permuted Brunner-Munzel test, use
brunnermunzel.test
with “perm = TRUE
” option,
or brunnermunzel.permutation.test
function. This
“perm
” option is used in also formula interface, matrix,
and table.
When perm
is TRUE
,
brunnermunzel.test
calls
brunnermunzel.permutation.test
in internal.
brunnermunzel.test(x, y, perm = TRUE)
#>
#> permuted Brunner-Munzel Test
#>
#> data: x and y
#> p-value = 0.1581
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.2839506
brunnermunzel.permutation.test(x, y)
#>
#> permuted Brunner-Munzel Test
#>
#> data: x and y
#> p-value = 0.1581
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.2839506
Because statistics in all combinations are calculated in permuted Brunner-Munzel test (\({}_{n_{x}+n_{y}}C_{n_{x}}\) where \(n_{x}\) and \(n_{y}\) are sample size of \(x\) and \(y\), respectively), it takes a long time to obtain results.
Therefore, when sample size is too large [the number of combination
is more than 40116600 (\(=\)
choose(28, 14)
)], it switches to Brunner-Munzel test
automatically.
# sample size is 30
brunnermunzel.permutation.test(1:15, 3:17)
#> Warning in brunnermunzel.permutation.test.default(1:15, 3:17): Sample number is too large. Using 'brunnermunzel.test'
#>
#> Brunner-Munzel Test
#>
#> data: x and y
#> Brunner-Munzel Test Statistic = 1.1973, df = 28, p-value = 0.2412
#> 95 percent confidence interval:
#> 0.4115330 0.8373559
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.6244444
force
optionWhen you want to perform permuted Brunner-Munzel test regardless
sample size, you add “force = TRUE
” option to
brunnermunzel.permutation test
.
brunnermunzel.permutation.test(1:15, 3:17, force = TRUE)
#>
#> permuted Brunner-Munzel Test
#>
#> data: 1:15 and 3:17
#> p-value = 0.2341
alternative
optionbrunnermunzel.test
also can use
“alternative
” option as well as t.test
and
wilcox.test
functions.
To test whether the average rank of group \(x\) is greater than that of group \(y\), alternative = "greater"
option is added. In contrast, to test whether the average rank of group
\(x\) is lesser than that of group
\(y\),
alternative = "less"
option is added.
The results of Brunner-Munzel test and Wilcoxon sum-rank test
(Mann-Whitney test) with alternative = "greater"
option are
shown. In this case, median of \(x\) is
1.68, and median of \(y\) is 1.06.
brunnermunzel.test(x, y, alternative = "greater")
#>
#> Brunner-Munzel Test
#>
#> data: x and y
#> Brunner-Munzel Test Statistic = -1.4673, df = 15.147, p-value = 0.08138
#> 95 percent confidence interval:
#> -0.02962941 0.59753064
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.2839506
wilcox.test(x, y, alternative = "greater")
#> Warning in wilcox.test.default(x, y, alternative = "greater"): cannot compute
#> exact p-value with ties
#>
#> Wilcoxon rank sum test with continuity correction
#>
#> data: x and y
#> W = 58, p-value = 0.06646
#> alternative hypothesis: true location shift is greater than 0
When using formula, brunnermunzel.test
with
alternative = "greater"
option tests an alternative
hypothesis “1st level is greater than 2nd level”.
In contrast, brunnermunzel.test
with
alternative = "less"
option tests an alternative hypothesis
“1st level is lesser than 2nd level”.
$group
dat#> [1] x x x x x x x x x y y y y y y y y y
#> Levels: x y
brunnermunzel.test(value ~ group, data = dat, alternative = "greater")$p.value
#> [1] 0.08137809
wilcox.test(value ~ group, data = dat, alternative = "greater")$p.value
#> Warning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot
#> compute exact p-value with ties
#> [1] 0.06645973
brunnermunzel.test(x, y, alternative = "less")$p.value
#> [1] 0.9186219
wilcox.test(x, y, alternative = "less")$p.value
#> Warning in wilcox.test.default(x, y, alternative = "less"): cannot compute exact
#> p-value with ties
#> [1] 0.9442044
est
optionNormally, brunnermunzel.test
and
brunnermunzel.permutation test
return the estimate \(P(X<Y) + 0.5 \times P(X=Y)\). When
‘est = "difference"
’ option is used, these functions return
mean difference [\(P(X<Y) -
P(X>Y)\)] in estimate and confidence interval.
Note that \(P(X<Y) - P(X>Y) = 2p - 1\) when \(p = P(X<Y) + 0.5 \times P(X=Y)\).
This change is proposed by Dr. Julian D. Karch.
brunnermunzel.test(x, y, est = "difference")
#>
#> Brunner-Munzel Test
#>
#> data: x and y
#> Brunner-Munzel Test Statistic = -1.4673, df = 15.147, p-value = 0.1628
#> 95 percent confidence interval:
#> -1.0592588 0.1950613
#> sample estimates:
#> P(X<Y)-P(X>Y)
#> -0.4320988
brunnermunzel.permutation.test(x, y, est = "difference")
#>
#> permuted Brunner-Munzel Test
#>
#> data: x and y
#> p-value = 0.1581
#> sample estimates:
#> P(X<Y)-P(X>Y)
#> -0.4320988
In some case, data is provided as aggregated table. Both
brunnermunzel.test
and
brunnermunzel.permutation.test
accept data of
matirix and table class.
Normal | Moderate | Severe | |
---|---|---|---|
A | 5 | 3 | 2 |
B | 1 | 3 | 6 |
<- matrix(c(5, 3, 2, 1, 3, 6), nr = 2, byrow = TRUE)
dat1 <- as.table(dat1)
dat2 colnames(dat2) <- c("Normal", "Moderate", "Severe")
# matrix class
dat1 #> [,1] [,2] [,3]
#> [1,] 5 3 2
#> [2,] 1 3 6
# table class
dat2 #> Normal Moderate Severe
#> A 5 3 2
#> B 1 3 6
brunnermunzel.test(dat1)
#>
#> Brunner-Munzel Test
#>
#> data: Group1 and Group2
#> Brunner-Munzel Test Statistic = 2.4447, df = 17.394, p-value = 0.02542
#> 95 percent confidence interval:
#> 0.5359999 0.9840001
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.76
brunnermunzel.test(dat2)
#>
#> Brunner-Munzel Test
#>
#> data: A and B
#> Brunner-Munzel Test Statistic = 2.4447, df = 17.394, p-value = 0.02542
#> 95 percent confidence interval:
#> 0.5359999 0.9840001
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.76
brunnermunzel.permutation.test(dat1)
#>
#> permuted Brunner-Munzel Test
#>
#> data: Group1 and Group2
#> p-value = 0.05116
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.76
brunnermunzel.permutation.test(dat2)
#>
#> permuted Brunner-Munzel Test
#>
#> data: A and B
#> p-value = 0.05116
#> sample estimates:
#> P(X<Y)+.5*P(X=Y)
#> 0.76
brunnermunzel.test
functionbrunnermunzel.test
function is derived from
brunner.munzel.test
function in lawstat
package (Maintainer of this package is Vyacheslav Lyubchich; License is
GPL-2 or GPL-3) with modification. The authors of this function are
Wallace Hui, Yulia R. Gel, Joseph L. Gastwirth and Weiwen Miao.
combination
subroutine by FORTRAN77FORTRAN subroutine combination
in combination.f is
derived from the program by shikino (http://slpr.sakura.ne.jp/qp/combination)(CC-BY-4.0) with
slight modification.
Without this subroutine, I could not make
brunnermunzel.permutation.test
. Thanks to shikono for your
useful subroutine.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.