The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
An implementation of the Correlated Pseudo-Marginal Sampler.
Install from CRAN by typing
install.packages("cPseudoMaRg")
in an R console. Alternatively, install from Github by typing
devtools::install_github("tbrown122387/cpm")
Another Random Effects Model that mimics the example in the above paper. They estimate a mean parameter, whereas the unknown parameters here are variance parameters. Also, this model’s likelihood is nonidentifiable.
# y | x, theta ~ Normal(x, SSy)
# x | theta ~ Normal(0, SSx)
# theta = (SSy + SSx, SS_x)
# p(theta | y) propto p(y | theta)p(theta)
# approx p(y | theta) with mean( p(y | xi, theta) ) where xi ~ p(xi | theta)
# real data
realxVar <- .2
realyVar <- .3
realTheta1 <- realxVar + realyVar
realTheta2 <- realxVar
realParams <- c(realTheta1, realTheta2)
numObs <- 10
realX <- rnorm(numObs, mean = 0, sd = sqrt(realxVar))
realY <- rnorm(numObs, mean = realX, sd = sqrt(realyVar))
# tuning params
numImportanceSamps <- 1000
numMCMCIters <- 10000
randomWalkScale <- 1.5
recordEveryTh <- 1
myLLApproxEval <- function(y, thetaProposal, uProposal){
if( (thetaProposal[1] > thetaProposal[2]) & (all(thetaProposal > 0))){
xSamps <- uProposal*sqrt(thetaProposal[2])
logCondLikes <- sapply(xSamps,
function(xsamp) {
sum(dnorm(y,
xsamp,
sqrt(thetaProposal[1] - thetaProposal[2]),
log = T)) })
m <- max(logCondLikes)
log(sum(exp(logCondLikes - m))) + m - log(length(y))
}else{
-Inf
}
}
sampler <- makeCPMSampler(
paramKernSamp = function(params){
return(params + rnorm(2)*randomWalkScale)
},
logParamKernEval = function(oldTheta, newTheta){
dnorm(newTheta[1], oldTheta[1], sd = randomWalkScale, log = TRUE)
+ dnorm(newTheta[2], oldTheta[2], sd = randomWalkScale, log = TRUE)
},
logPriorEval = function(theta){
if( (theta[1] > theta[2]) & all(theta > 0)){
0
}else{
-Inf
}
},
logLikeApproxEval = myLLApproxEval,
realY, numImportanceSamps, numMCMCIters, .99, recordEveryTh
)
res <- sampler(realParams)
# look at output
print(res)
plot(res)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.