The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

catch: Covariate-Adjusted Tensor Classification in High-Dimensions

Performs classification and variable selection on high-dimensional tensors (multi-dimensional arrays) after adjusting for additional covariates (scalar or vectors) as CATCH model in Pan, Mai and Zhang (2018) <doi:10.48550/arXiv.1805.04421>. The low-dimensional covariates and the high-dimensional tensors are jointly modeled to predict a categorical outcome in a multi-class discriminant analysis setting. The Covariate-Adjusted Tensor Classification in High-dimensions (CATCH) model is fitted in two steps: (1) adjust for the covariates within each class; and (2) penalized estimation with the adjusted tensor using a cyclic block coordinate descent algorithm. The package can provide a solution path for tuning parameter in the penalized estimation step. Special case of the CATCH model includes linear discriminant analysis model and matrix (or tensor) discriminant analysis without covariates.

Version: 1.0.1
Depends: R (≥ 3.1.1)
Imports: tensr, Matrix, MASS, methods
Published: 2021-01-04
DOI: 10.32614/CRAN.package.catch
Author: Yuqing Pan, Qing Mai, Xin Zhang
Maintainer: Yuqing Pan <yuqing.pan at stat.fsu.edu>
License: GPL-2
NeedsCompilation: yes
CRAN checks: catch results

Documentation:

Reference manual: catch.pdf

Downloads:

Package source: catch_1.0.1.tar.gz
Windows binaries: r-devel: catch_1.0.1.zip, r-release: catch_1.0.1.zip, r-oldrel: catch_1.0.1.zip
macOS binaries: r-release (arm64): catch_1.0.1.tgz, r-oldrel (arm64): catch_1.0.1.tgz, r-release (x86_64): catch_1.0.1.tgz, r-oldrel (x86_64): catch_1.0.1.tgz
Old sources: catch archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=catch to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.