The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

margins.dat

Given a design matrix, as generated by the design.des function, the design.dat function appends (1) fitted values on the response scale (“fitted”), (2) the delta method standard error for the fitted value (“se”), (3) the lower limit of a confidence interval around the fitted value (“ll”), and the upper limit of a confidence interval around the fitted value (“ul”).

For example:

library(catregs)
data("Mize19AH")
m1 <- glm(alcB ~woman*parrole + age + race2 + race3 + race4 + income + ed1 + ed2 + ed3 + ed4,family="binomial",data=Mize19AH)
des2<-margins.des(m1,expand.grid(woman=c(0,1),parrole=c(0,1)))
margins.dat(m1,des2,rounded=5)
##   woman parrole      age   race2  race3   race4   income    ed1     ed2     ed3
## 1     0       0 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 2     1       0 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 3     0       1 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 4     1       1 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
##       ed4  fitted      se      ll      ul
## 1 0.09775 0.72071 0.01277 0.69567 0.74574
## 2 0.09775 0.66015 0.01556 0.62966 0.69065
## 3 0.09775 0.61450 0.02024 0.57483 0.65416
## 4 0.09775 0.49175 0.01470 0.46293 0.52056
des1 <- margins.des(m1,expand.grid(parrole=1,woman=1))
margins.dat(m1,des1,rounded=5)
##   parrole woman      age   race2  race3   race4   income    ed1     ed2     ed3
## 1       1     1 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 2       1     1 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 3       1     1 28.41653 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
##       ed4  fitted     se      ll      ul
## 1 0.09775 0.49175 0.0147 0.46293 0.52056
## 2 0.09775      NA     NA      NA      NA
## 3 0.09775 0.49175 0.0147 0.46293 0.52056
des3 <- margins.des(m1,expand.grid(age=seq(20,75,5),parrole=c(0,1)))
a<- margins.dat(m1,des3,rounded=5)
a
##    age parrole   woman   race2  race3   race4   income    ed1     ed2     ed3
## 1   20       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 2   25       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 3   30       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 4   35       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 5   40       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 6   45       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 7   50       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 8   55       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 9   60       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 10  65       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 11  70       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 12  75       0 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 13  20       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 14  25       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 15  30       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 16  35       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 17  40       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 18  45       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 19  50       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 20  55       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 21  60       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 22  65       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 23  70       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
## 24  75       1 0.54748 0.21895 0.0058 0.02995 34.50605 0.1811 0.41003 0.25424
##        ed4  fitted      se       ll      ul
## 1  0.09775 0.82016 0.02367  0.77376 0.86656
## 2  0.09775 0.74777 0.01437  0.71961 0.77593
## 3  0.09775 0.65839 0.01302  0.63286 0.68391
## 4  0.09775 0.55613 0.03349  0.49048 0.62177
## 5  0.09775 0.44888 0.05585  0.33941 0.55835
## 6  0.09775 0.34618 0.07195  0.20516 0.48720
## 7  0.09775 0.25606 0.07823  0.10274 0.40939
## 8  0.09775 0.18285 0.07526  0.03534 0.33036
## 9  0.09775 0.12699 0.06618 -0.00272 0.25670
## 10 0.09775 0.08639 0.05448 -0.02039 0.19317
## 11 0.09775 0.05791 0.04275 -0.02588 0.14171
## 12 0.09775 0.03843 0.03241 -0.02509 0.10194
## 13 0.09775 0.71460 0.03507  0.64586 0.78335
## 14 0.09775 0.61944 0.02042  0.57943 0.65946
## 15 0.09775 0.51413 0.01353  0.48760 0.54065
## 16 0.09775 0.40754 0.03042  0.34791 0.46717
## 17 0.09775 0.30900 0.04596  0.21893 0.39908
## 18 0.09775 0.22523 0.05358  0.12021 0.33025
## 19 0.09775 0.15894 0.05343  0.05422 0.26367
## 20 0.09775 0.10941 0.04801  0.01532 0.20351
## 21 0.09775 0.07396 0.04012 -0.00468 0.15260
## 22 0.09775 0.04936 0.03186 -0.01310 0.11181
## 23 0.09775 0.03265 0.02440 -0.01517 0.08047
## 24 0.09775 0.02147 0.01819 -0.01418 0.05712

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.