| Title: | Causal Graph Interface |
| Version: | 0.3.1 |
| Description: | Create, query, and modify causal graphs. 'caugi' (Causal Graph Interface) is a causality-first, high performance graph package that provides a simple interface to build, structure, and examine causal relationships. |
| License: | MIT + file LICENSE |
| URL: | https://frederikfabriciusbjerre.github.io/caugi/ |
| BugReports: | https://github.com/frederikfabriciusbjerre/caugi/issues |
| Depends: | R (≥ 4.2) |
| Imports: | data.table, fastmap, S7, stats, methods |
| Suggests: | bnlearn, dagitty, devtools, ggm, graph, gRbase, igraph, knitr, MASS, Matrix, rextendr, rmarkdown, testthat |
| VignetteBuilder: | knitr |
| Config/rextendr/version: | 0.4.2 |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| SystemRequirements: | Cargo (Rust's package manager), rustc >= 1.80.0, xz |
| Config/Needs/website: | rmarkdown |
| NeedsCompilation: | yes |
| Packaged: | 2025-11-28 21:17:22 UTC; fabben |
| Author: | Frederik Fabricius-Bjerre [aut, cre, cph],
Johan Larsson |
| Maintainer: | Frederik Fabricius-Bjerre <frederik@fabriciusbjerre.dk> |
| Repository: | CRAN |
| Date/Publication: | 2025-12-04 12:00:02 UTC |
caugi (Causal Graph Interface)
Description
Create, query, and modify causal graphs. 'caugi' (Causal Graph Interface) is a causality-first, high performance graph package that provides a simple interface to build, structure, and examine causal relationships.
Author(s)
Maintainer: Frederik Fabricius-Bjerre frederik@fabriciusbjerre.dk [copyright holder]
Authors:
Johan Larsson johan@jolars.co (ORCID)
Michael Sachs sachsmc@gmail.com (ORCID)
See Also
Useful links:
Report bugs at https://github.com/frederikfabriciusbjerre/caugi/issues
Fit items on a line
Description
Helper function to determine how many items can fit on a line of given width, considering an indent.
Usage
.caugi_fit_on_line(items, width, indent)
Arguments
items |
A character vector of item labels. |
width |
An integer specifying the total line width. |
indent |
An integer specifying the indent width. |
Value
An integer indicating how many items fit on the line.
Create the state environment for a caugi (internal)
Description
Internal function to create the state environment for a
caugi. This function is not intended to be used directly by users.
Usage
.cg_state(
nodes,
edges,
ptr,
built,
simple,
class,
name_index_map,
index_name_map
)
Arguments
nodes |
A |
edges |
A |
ptr |
A pointer to the underlying Rust graph structure
(or |
built |
Logical; whether the graph has been built. |
simple |
Logical; whether the graph is simple (no parallel edges or self-loops). |
class |
Character; one of |
name_index_map |
A |
Value
An environment containing the graph state.
Collect edges and nodes
Description
Collect edges (via .parse_edge_arg) and explicitly declared nodes (no edges).
Usage
.collect_edges_nodes(calls)
Arguments
calls |
A list of expressions from caugi(...) |
Value
A list with two elements:
edges: a
data.tablewith columnsfrom,edge,todeclared: a character vector of explicitly declared nodes
Combine terms with '+'
Description
Combine a list of terms into a single left-associative '+' call.
Usage
.combine_plus(terms)
Arguments
terms |
A list of expressions to combine. |
Value
A single expression combining the terms with '+'.
Does the expression contain an edge call?
Description
Recursively check if the expression contains any edge call.
Usage
.contains_edge(expr)
Arguments
expr |
An expression to check |
Value
TRUE if the expression contains an edge call, FALSE otherwise
Edge constructor
Description
Internal function to construct edges for caugi objects.
Usage
.edge_constructor(from = character(), edge = character(), to = character())
Arguments
from |
Character vector of source node names. |
edge |
Character vector of edge glyphs. |
to |
Character vector of target node names. |
Value
A data.table object with columns from, edge, and to.
Edge constructor using indices.
Description
Internal function to construct edges for caugi objects using indices.
Usage
.edge_constructor_idx(from_idx, edge, to_idx, node_names)
Arguments
from_idx |
Integer vector of source node indices. |
edge |
Character vector of edge glyphs. |
to_idx |
Integer vector of target node indices. |
node_names |
Character vector of node names. |
Value
A data.table object with columns from, edge, and to.
Get edge operators
Description
This function gets the default caugi edge operators
Usage
.edge_ops_get()
Value
The current edge operators of the caugi environment
Edge specification infix operators
Description
These infix operators are used to specify edges in
caugi(). This function helps build infix operators.
Usage
.edge_spec(from_sym, to_expr, glyph)
Arguments
from_sym |
A symbol representing the source node. |
to_expr |
An expression representing the target node(s).
Can be a symbol, string, number, |
glyph |
A string representing the edge glyph (e.g., |
Value
A data.table with columns from, to, and edge.
Turn edge units into a data.table of edges
Description
Convert a list of edge units into a data.table with columns
from, edge, and to.
Usage
.edge_units_to_dt(units)
Arguments
units |
A list of edge units, each with |
Value
A data.table with columns from, edge, and to.
Expand node expressions
Description
Expand node expressions: symbol, "B", c(...), +, (...)
Usage
.expand_nodes(expr, env = parent.frame())
Arguments
expr |
An expression representing nodes. |
Value
A character vector of node names.
Helper to expand the right-hand side of an edge specification
Description
This function expands the right-hand side of an edge
specification into a character vector of target node names. It handles
various forms of input, including symbols, calls with +, calls with c(),
and character literals.
Usage
.expand_targets(expr)
Arguments
expr |
An expression representing the target node(s). |
Value
A character vector of target node names.
Flatten a chained edge expression
Description
Given a chained edge expression, flatten it into its terms and operators.
Usage
.flatten_edge_chain(call_expr)
Arguments
call_expr |
A call expression representing a chained edge. |
Value
A list with two elements, terms and ops.
Build edges data.table from verb call.
Description
Internal helper to build edges data.table from verb call.
Usage
.get_edges(from, edge, to, calls)
Arguments
from |
Character vector of source node names. |
edge |
Character vector of edge types. |
to |
Character vector of target node names. |
calls |
List of calls from |
Value
A data.table with columns from, edge, and to.
Get nodes data.table from verb call.
Description
Internal helper to build nodes data.table from verb call.
Usage
.get_nodes(name, calls)
Arguments
name |
Character vector of node names. |
calls |
List of calls from |
Value
A data.table with column name for node names.
Output object of getter queries
Description
Helper to format the output of getter queries.
Usage
.getter_output(cg, idx0, nodes)
Arguments
cg |
A |
idx0 |
A vector of zero-based node indices. |
nodes |
A vector of node names. |
Value
A list of character vectors, each a set of node names. If only one node is requested, returns a character vector.
Get edge operators
Description
This function gets the default caugi edge glyphs
Usage
.glyph_map_get()
Value
The current edge glyphs of the caugi environment
Get glyph for an operator
Description
Get the glyph string for a given edge operator symbol.
Usage
.glyph_of(op_sym)
Arguments
op_sym |
A symbol representing the edge operator (e.g., |
Value
A string representing the edge glyph (e.g., "-->").
Is it an edge call / expression?
Description
This function checks if the expression is an edge call
Usage
.is_edge_call(expr)
Arguments
expr |
An expression to check |
Value
TRUE if the expression is an edge call, FALSE otherwise
Is it a node expr?
Description
Check if the expression is a valid node expression: symbol, string, number, c(...), +, (...)
Usage
.is_node_expr(expr)
Arguments
expr |
An expression to check |
Value
TRUE if the expression is a valid node expression, FALSE otherwise
Mark a caugi as not built.
Description
When a caugi is modified, it should be marked as not
built. This function sets the built attribute to FALSE. Thereby, the Rust
backend and the R frontend does not match, and at one point, the
caugi will need to be rebuild for it to be queried.
Usage
.mark_not_built(cg)
Arguments
cg |
A |
Value
The same caugi object, but with the built attribute set to
FALSE.
Node constructor
Description
A simple wrapper creating a data.table object with a single column name.
Usage
.node_constructor(names = character(), sort = FALSE)
Arguments
names |
Character vector of node names. |
sort |
Logical indicating whether to sort the node names. |
Details
The reason this exists is so if changes should be made in the future, it is
easy to simply change this constructor, rather than changing the calls to
data.table all over the place.
Value
A data.table object with a single column name.
Parse one caugi(...) argument
Description
Parse one caugi(...) argument into edge units
Usage
.parse_edge_arg(expr)
Arguments
expr |
An expression representing an edge with nodes |
Value
A list of edge units, each with lhs, rhs, and glyph.
Register a new edge operator
Description
Register a new edge operator for use in caugi().
Usage
.register_edge(glyph)
Arguments
glyph |
A string representing the edge glyph (e.g., |
Value
The operator name (e.g., "%-->%"), invisibly.
Resolve node name or index to 0-based index.
Description
Internal helper function to resolve either a node name or a
node index to a 0-based index.
.resolve_idx0_get uses get on the fastmap and expects a single value,
while .resolve_idx0_mget uses mget and can return multiple values.
Usage
.resolve_idx0_get(nm_idx_map, node_name = NULL, node_index = NULL)
.resolve_idx0_mget(nm_idx_map, node_name = NULL, node_index = NULL)
Arguments
nm_idx_map |
A |
node_name |
Optional character vector of node names. |
node_index |
Optional numeric vector of 1-based node indices. |
See Also
Create an edge unit from lhs, op, rhs
Description
Create an edge unit from lhs, op, rhs expressions.
Usage
.segment_units(lhs_term, op_chr, rhs_term)
Arguments
lhs_term |
An expression for the left-hand side nodes. |
op_chr |
A string representing the edge operator glyph. |
rhs_term |
An expression for the right-hand side nodes. |
Value
A list with elements lhs, rhs, and glyph.
Set names to an object
Description
Only made to avoid using stats::setNames.
Usage
.set_names(object = nm, nm)
Arguments
object |
An R object to which names are to be assigned. |
nm |
A character vector of names to assign to the object. |
Value
The input object with the assigned names.
Expand target expressions with =
Description
Split any expression into top-level '+' terms (fully flattened).
Usage
.split_plus(expr)
Arguments
expr |
An expression representing nodes. |
Value
A character vector of node names.
Update nodes and edges of a caugi
Description
Internal helper to add or remove nodes/edges and mark graph as not built.
Usage
.update_caugi(
cg,
nodes = NULL,
edges = NULL,
action = c("add", "remove"),
inplace = FALSE
)
Arguments
cg |
A |
nodes |
A |
edges |
A |
action |
One of |
inplace |
Logical, whether to modify the graph inplace or not. |
Value
The updated caugi object.
Convert a graph pointer to a caugi S7 object
Description
Convert a graph pointer from Rust to a caugi to a
S7 object.
Usage
.view_to_caugi(ptr, node_names = NULL)
Arguments
ptr |
A pointer to the underlying Rust graph structure. |
node_names |
Optional character vector of node names. If |
Value
A caugi object representing the graph.
Compute an adjustment set
Description
Computes an adjustment set for X -> Y in a DAG.
Usage
adjustment_set(
cg,
X = NULL,
Y = NULL,
X_index = NULL,
Y_index = NULL,
type = c("optimal", "parents", "backdoor")
)
Arguments
cg |
A |
X, Y |
Node names. |
X_index, Y_index |
Optional numeric 1-based indices. |
type |
One of |
Details
Types supported:
-
"parents":\bigcup \mathrm{Pa}(X)minusX \cup Y -
"backdoor": Pearl backdoor formula -
"optimal": O-set (only for singlexand singley)
Value
A character vector of node names representing the adjustment set.
See Also
Other adjustment:
all_backdoor_sets(),
d_separated(),
is_valid_backdoor()
Examples
cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"
)
adjustment_set(cg, "X", "Y", type = "parents") # C, A
adjustment_set(cg, "X", "Y", type = "backdoor") # C, A
adjustment_set(cg, "X", "Y", type = "optimal") # K
Adjustment Identification Distance
Description
Compute the Adjustment Identification Distance (AID) between two
graphs using the gadjid Rust package.
Usage
aid(truth, guess, type = c("oset", "ancestor", "parent"), normalized = TRUE)
Arguments
truth |
A |
guess |
A |
type |
A character string specifying the type of AID to compute.
Options are |
normalized |
Logical; if |
Value
A numeric representing the AID between the two graphs, if
normalized = TRUE, or an integer count if normalized = FALSE.
See Also
Examples
set.seed(1)
truth <- generate_graph(n = 100, m = 200, class = "DAG")
guess <- generate_graph(n = 100, m = 200, class = "DAG")
aid(truth, guess) # 0.0187
Get all backdoor sets up to a certain size.
Description
This function returns the backdoor sets up to size max_size,
which per default is set to 10.
Usage
all_backdoor_sets(
cg,
X = NULL,
Y = NULL,
X_index = NULL,
Y_index = NULL,
minimal = TRUE,
max_size = 3L
)
Arguments
cg |
A |
X, Y |
Single node name. |
X_index, Y_index |
Optional 1-based indices (exclusive with name args). |
minimal |
Logical; if |
max_size |
Integer; maximum size of sets to consider (default 3). |
Value
A list of character vectors, each an adjustment set (possibly empty).
See Also
Other adjustment:
adjustment_set(),
d_separated(),
is_valid_backdoor()
Examples
cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"
)
all_backdoor_sets(cg, X = "X", Y = "Y", max_size = 3L, minimal = FALSE)
#> [[1]]
#> [1] "A"
#>
#> [[2]]
#> [1] "K"
#>
#> [[3]]
#> [1] "C" "A"
#>
#> [[4]]
#> [1] "C" "K"
#>
#> [[5]]
#> [1] "A" "K"
#>
#> [[6]]
#> [1] "C" "A" "K"
all_backdoor_sets(cg, X = "X", Y = "Y", max_size = 3L, minimal = TRUE)
#> [[1]]
#> [1] "A"
#>
#> [[2]]
#> [1] "K"
Get ancestors of nodes in a caugi
Description
Get ancestors of nodes in a caugi
Usage
ancestors(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
ancestors(cg, "A") # NULL
ancestors(cg, index = 2) # "A"
ancestors(cg, "B") # "A"
ancestors(cg, c("B", "C"))
#> $B
#> [1] "A"
#>
#> $C
#> [1] "A" "B"
Convert a caugi to an adjacency matrix
Description
Does not take other edge types than the one found in a PDAG.
Usage
as_adjacency(x)
Arguments
x |
A |
Value
An integer 0/1 adjacency matrix with row/col names.
See Also
Other conversions:
as_bnlearn(),
as_caugi(),
as_dagitty(),
as_igraph()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
adj <- as_adjacency(cg)
Convert a caugi to a bnlearn network
Description
Convert a caugi to a bnlearn network
Usage
as_bnlearn(x)
Arguments
x |
A |
Value
A bnlearn DAG.
See Also
Other conversions:
as_adjacency(),
as_caugi(),
as_dagitty(),
as_igraph()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
g_bn <- as_bnlearn(cg)
Convert to a caugi
Description
Convert an object to a caugi. The object can be a
graphNEL, matrix, tidygraph, daggity, bn, or igraph.
Usage
as_caugi(
x,
class = c("DAG", "PDAG", "PAG", "UNKNOWN"),
simple = TRUE,
build = TRUE,
collapse = FALSE,
collapse_to = "---",
...
)
Arguments
x |
An object to convert to a |
class |
"DAG", "PDAG", "PAG", or "UNKNOWN". "PAG" is only supported for integer coded matrices. |
simple |
logical. If |
build |
logical. If |
collapse |
logical. If |
collapse_to |
Character string to use as the edge glyph when collapsing.
Should be a registered symmetrical edge glyph. Default is |
... |
Additional arguments passed to specific methods. |
Details
For matrices, as_caugi assumes that the rows are the from nodes
and the columns are the to nodes. Thus, for a graph, G: A –> B, we would
have that G["A", "B"] == 1 and G["B", "A"] == 0.
For PAGs, the integer codes are as follows (as used in pcalg):
0: no edge
1: circle (e.g.,
A o-o BorA o-- B)2: arrowhead (e.g.,
A --> BorA o-> B)3: tail (e.g.,
A o-- BorA --- B)
Value
A caugi object.
See Also
Other conversions:
as_adjacency(),
as_bnlearn(),
as_dagitty(),
as_igraph()
Examples
# igraph
ig <- igraph::graph_from_literal(A - +B, B - +C)
cg_ig <- as_caugi(ig, class = "DAG")
# graphNEL
gn <- graph::graphNEL(nodes = c("A", "B", "C"), edgemode = "directed")
gn <- graph::addEdge("A", "B", gn)
gn <- graph::addEdge("B", "C", gn)
cg_gn <- as_caugi(gn, class = "DAG")
# adjacency matrix
m <- matrix(0L, 3, 3, dimnames = list(LETTERS[1:3], LETTERS[1:3]))
m["A", "B"] <- 1L
m["B", "C"] <- 1L
cg_adj <- as_caugi(m, class = "DAG")
# bnlearn
bn <- bnlearn::model2network("[A][B|A][C|B]")
cg_bn <- as_caugi(bn, class = "DAG")
# dagitty
dg <- dagitty::dagitty("dag {
A -> B
B -> C
}")
cg_dg <- as_caugi(dg, class = "DAG")
cg <- caugi(A %-->% B %-->% C, class = "DAG")
# check that all nodes are equal in all graph objects
for (cg_converted in list(cg_ig, cg_gn, cg_adj, cg_bn, cg_dg)) {
stopifnot(identical(nodes(cg), nodes(cg_converted)))
stopifnot(identical(edges(cg), edges(cg_converted)))
}
# collapse mutual edges
ig2 <- igraph::graph_from_literal(A - +B, B - +A, C - +D)
cg2 <- as_caugi(ig2, class = "PDAG", collapse = TRUE, collapse_to = "---")
# coded integer matrix for PAGs (pcalg style)
nm <- c("A", "B", "C", "D")
M <- matrix(0L, 4, 4, dimnames = list(nm, nm))
# A --> B
M["A", "B"] <- 2L # mark at B end
M["B", "A"] <- 3L # mark at A end
# A --- C
M["A", "C"] <- 3L
M["C", "A"] <- 3L
# B o-> C
M["B", "C"] <- 2L
M["C", "B"] <- 1L
# C o-o D
M["C", "D"] <- 1L
M["D", "C"] <- 1L
cg <- as_caugi(M, class = "PAG")
Convert a caugi to a dagitty graph
Description
Convert a caugi to a dagitty graph
Usage
as_dagitty(x)
Arguments
x |
A |
Value
A dagitty object.
See Also
Other conversions:
as_adjacency(),
as_bnlearn(),
as_caugi(),
as_igraph()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
g_dg <- as_dagitty(cg)
Convert a caugi to an igraph object
Description
Convert a caugi to an igraph object
Usage
as_igraph(x, ...)
Arguments
x |
A |
... |
Additional arguments passed to |
Value
An igraph object representing the same graph structure.
See Also
Other conversions:
as_adjacency(),
as_bnlearn(),
as_caugi(),
as_dagitty()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
ig <- as_igraph(cg)
Build the graph now
Description
If a caugi has been modified (nodes or edges added or
removed), it is marked as not built, i.e cg@built = FALSE.
This function builds the graph using the Rust backend and updates the
internal pointer to the graph. If the graph is already built, it is returned.
Usage
build(cg, ...)
Arguments
cg |
A |
... |
Not used. |
Value
The built caugi object.
See Also
Other verbs:
caugi_verbs
Examples
# initialize empty graph and build slowly
cg <- caugi(class = "PDAG")
cg <- cg |>
add_nodes(c("A", "B", "C", "D", "E")) |> # A, B, C, D, E
add_edges(A %-->% B %-->% C) |> # A --> B --> C, D, E
set_edges(B %---% C) # A --> B --- C, D, E
cg <- remove_edges(cg, B %---% C) |> # A --> B, C, D, E
remove_nodes(c("C", "D", "E")) # A --> B
# verbs do not build the Rust backend
cg@built # FALSE
build(cg)
cg@built # TRUE
Create a caugi from edge expressions.
Description
Create a caugi from a series of edge expressions using
infix operators. Nodes can be specified as symbols, strings, or numbers.
The following edge operators are supported by default:
-
%-->%for directed edges (A –> B) -
%---%for undirected edges (A — B) -
%<->%for bidirected edges (A <-> B) -
%o->%for partially directed edges (A o-> B) -
%--o%for partially undirected edges (A –o B) -
%o-o%for partial edges (A o-o B)
You can register additional edge types using register_caugi_edge().
Usage
caugi(
...,
from = NULL,
edge = NULL,
to = NULL,
nodes = NULL,
edges_df = NULL,
simple = TRUE,
build = TRUE,
class = c("UNKNOWN", "DAG", "PDAG", "UG"),
state = NULL
)
Arguments
... |
Edge expressions using the supported infix operators, or
nodes given by symbols or strings. Multiple edges can be
combined using |
from |
Character vector of source node names.
Optional; mutually exclusive with |
edge |
Character vector of edge types.
Optional; mutually exclusive with |
to |
Character vector of target node names.
Optional; mutually exclusive with |
nodes |
Character vector of node names to declare as isolated nodes.
An optional, but recommended, option is to provide all node names in the
graph, including those that appear in edges. If |
edges_df |
Optional data.frame or data.table with columns
|
simple |
Logical; if |
build |
Logical; if |
class |
Character; one of |
state |
For internal use. Build a graph by supplying a pre-constructed state environment. |
Value
A caugi S7 object containing the nodes, edges, and a
pointer to the underlying Rust graph structure.
Examples
# create a simple DAG (using NSE)
cg <- caugi(
A %-->% B + C,
B %-->% D,
class = "DAG"
)
# create a PDAG with undirected edges (using NSE)
cg2 <- caugi(
A %-->% B + C,
B %---% D,
E, # no neighbors for this node
class = "PDAG"
)
# create a DAG (using SE)
cg3 <- caugi(
from = c("A", "A", "B"),
edge = c("-->", "-->", "-->"),
to = c("B", "C", "D"),
nodes = c("A", "B", "C", "D", "E"),
class = "DAG"
)
# create a non-simple graph
cg4 <- caugi(
A %-->% B,
B %-->% A,
class = "UNKNOWN",
simple = FALSE
)
cg4@simple # FALSE
cg4@built # TRUE
cg4@graph_class # "UNKNOWN"
# create graph, but don't built Rust object yet, which is needed for queries
cg5 <- caugi(
A %-->% B + C,
B %-->% D,
class = "DAG",
build = FALSE
)
cg@built # FALSE
Manipulate nodes and edges of a caugi
Description
Add, remove, or and set nodes or edges to / from a caugi
object. Edges can be specified using expressions with the infix operators.
Alternatively, the edges to be added are specified using the
from, edge, and to arguments.
Usage
add_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)
remove_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)
set_edges(cg, ..., from = NULL, edge = NULL, to = NULL, inplace = FALSE)
add_nodes(cg, ..., name = NULL, inplace = FALSE)
remove_nodes(cg, ..., name = NULL, inplace = FALSE)
Arguments
cg |
A |
... |
Expressions specifying edges to add using the infix operators,
or nodes to add using unquoted names, vectors via |
from |
Character vector of source node names. Default is |
edge |
Character vector of edge types. Default is |
to |
Character vector of target node names. Default is |
inplace |
Logical, whether to modify the graph inplace or not.
If |
name |
Character vector of node names. Default is |
Details
Caugi graph verbs
Value
The updated caugi.
Functions
-
add_edges(): Add edges. -
remove_edges(): Remove edges. -
set_edges(): Set edge type for given pair(s). -
add_nodes(): Add nodes. -
remove_nodes(): Remove nodes.
See Also
Other verbs:
build()
Examples
# initialize empty graph and build slowly
cg <- caugi(class = "PDAG")
cg <- cg |>
add_nodes(c("A", "B", "C", "D", "E")) |> # A, B, C, D, E
add_edges(A %-->% B %-->% C) |> # A --> B --> C, D, E
set_edges(B %---% C) # A --> B --- C, D, E
cg <- remove_edges(cg, B %---% C) |> # A --> B, C, D, E
remove_nodes(c("C", "D", "E")) # A --> B
# verbs do not build the Rust backend
cg@built # FALSE
build(cg)
cg@built # TRUE
Get children of nodes in a caugi
Description
Get children of nodes in a caugi
Usage
children(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
children(cg, "A") # "B"
children(cg, index = 2) # "C"
children(cg, "B") # "C"
children(cg, c("B", "C"))
#> $B
#> [1] "C"
#>
#> $C
#> NULL
Are X and Y d-separated given Z?
Description
Checks whether every node in X is d-separated from every node
in Y given Z in a DAG.
Usage
d_separated(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL
)
Arguments
cg |
A |
X, Y, Z |
Node selectors: character vector of names, unquoted expression
(supports |
X_index, Y_index, Z_index |
Optional numeric 1-based indices (exclusive
with |
Value
TRUE if d-separated, FALSE otherwise.
See Also
Other adjustment:
adjustment_set(),
all_backdoor_sets(),
is_valid_backdoor()
Examples
cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"
)
d_separated(cg, "X", "Y", Z = c("A", "D")) # TRUE
d_separated(cg, "X", "Y", Z = NULL) # FALSE
Get descendants of nodes in a caugi
Description
Get descendants of nodes in a caugi
Usage
descendants(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
children(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
descendants(cg, "A") # "B" "C"
descendants(cg, index = 2) # "C"
descendants(cg, "B") # "C"
descendants(cg, c("B", "C"))
#> $B
#> [1] "C"
#>
#> $C
#> NULL
Infix operators for edge specifications
Description
These operators are used to specify edges in caugi().
Should be used internally in caugi() calls.
Usage
lhs %-->% rhs
lhs %---% rhs
lhs %<->% rhs
lhs %o-o% rhs
lhs %--o% rhs
lhs %o->% rhs
Arguments
lhs |
The left-hand side node expression. |
rhs |
The right-hand side node expression. |
Value
A data.table with columns from, to, and edge.
Get the edge types of a caugi.
Description
Get the edge types of a caugi.
Usage
edge_types(cg)
Arguments
cg |
A |
Value
A character vector of edge types.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %--o% C,
C %<->% D,
D %---% E,
A %o-o% E,
class = "UNKNOWN"
)
edge_types(cg) # returns c("-->", "o-o", "--o", "<->", "---")
Get edges of a caugi.
Description
Get edges of a caugi.
Usage
edges(cg)
E(cg)
Arguments
cg |
A |
Value
A data.table with columns from, edge, and to.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
D,
class = "DAG"
)
edges(cg) # returns the data.table with columns from, edge, to
Get all exogenous nodes in a caugi
Description
Get all exogenous nodes (nodes with no parents) in a
caugi.
Usage
exogenous(cg, undirected_as_parents = FALSE)
Arguments
cg |
A |
undirected_as_parents |
Logical; if |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
exogenous(cg) # "A"
Generate a caugi using Erdős-Rényi.
Description
Sample a random DAG or CPDAG using Erdős-Rényi for random graph generation.
Usage
generate_graph(n, m = NULL, p = NULL, class = c("DAG", "CPDAG"))
Arguments
n |
Integer >= 0. Number of nodes in the graph. |
m |
Integer in |
p |
Numeric in |
class |
"DAG" or "CPDAG". |
Value
The sampled caugi object.
Examples
# generate a random DAG with 5 nodes and 4 edges
dag <- generate_graph(n = 5, m = 4, class = "DAG")
# generate a random CPDAG with 5 nodes and edge probability 0.3
cpdag <- generate_graph(n = 5, p = 0.3, class = "CPDAG")
Hamming Distance
Description
Compute the Hamming Distance between two graphs.
Usage
hd(cg1, cg2, normalized = FALSE)
Arguments
cg1 |
A |
cg2 |
A |
normalized |
Logical; if |
Value
An integer representing the Hamming Distance between the two graphs,
if normalized = FALSE, or a numeric between 0 and 1 if normalized = TRUE.
See Also
Examples
cg1 <- caugi(A %-->% B %-->% C, D %-->% C, class = "DAG")
cg2 <- caugi(A %-->% B %-->% C, D %---% C, class = "PDAG")
hd(cg1, cg2) # 0
Is the caugi acyclic?
Description
Checks if the given caugi graph is acyclic.
Usage
is_acyclic(cg, force_check = FALSE)
Arguments
cg |
A |
force_check |
Logical; if |
Details
Logically, it should not be possible to have a graph class of "DAG" or "PDAG" that has cycles, but in case the user modified the graph after creation in some unforeseen way that could have introduced cycles, this function allows to force a check of acyclicity, if needed.
Value
A logical value indicating whether the graph is acyclic.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_acyclic <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
is_acyclic(cg_acyclic) # TRUE
cg_cyclic <- caugi(
A %-->% B,
B %-->% C,
C %-->% A,
class = "UNKNOWN"
)
is_acyclic(cg_cyclic) # FALSE
Is it a caugi graph?
Description
Checks if the given object is a caugi. Mostly used
internally to validate inputs.
Usage
is_caugi(x, throw_error = FALSE)
Arguments
x |
An object to check. |
throw_error |
Logical; if |
Value
A logical value indicating whether the object is a caugi.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
is_caugi(cg) # TRUE
Is the caugi graph a CPDAG?
Description
Checks if the given caugi graph is a
Complete Partially Directed Acyclic Graph (CPDAG).
Usage
is_cpdag(cg)
Arguments
cg |
A |
Value
A logical value indicating whether the graph is a CPDAG.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_cpdag <- caugi(
A %---% B,
A %-->% C,
B %-->% C,
class = "PDAG"
)
is_cpdag(cg_cpdag) # TRUE
cg_not_cpdag <- caugi(
A %---% B,
A %---% C,
B %-->% C,
class = "PDAG"
)
is_cpdag(cg_not_cpdag) # FALSE
Is the caugi graph a DAG?
Description
Checks if the given caugi graph is a
Directed Acyclic Graph (DAG).
Usage
is_dag(cg, force_check = FALSE)
Arguments
cg |
A |
force_check |
Logical; if |
Value
A logical value indicating whether the graph is a DAG.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_dag_class <- caugi(
A %-->% B,
class = "DAG"
)
is_dag(cg_dag_class) # TRUE
cg_dag_but_pdag_class <- caugi(
A %-->% B,
class = "PDAG"
)
is_dag(cg_dag_but_pdag_class) # TRUE
cg_cyclic <- caugi(
A %-->% B,
B %-->% C,
C %-->% A,
class = "UNKNOWN",
simple = FALSE
)
is_dag(cg_cyclic) # FALSE
cg_undirected <- caugi(
A %---% B,
class = "UNKNOWN"
)
is_dag(cg_undirected) # FALSE
Is the edge symmetric?
Description
Check if the given edge glyph is symmetric in the edge registry.
Usage
is_edge_symmetric(glyph)
Arguments
glyph |
A string representing the edge glyph (e.g., |
Value
Logical, TRUE if the edge is symmetric, otherwise throws error.
Is the caugi graph empty?
Description
Checks if the given caugi graph is empty (has no nodes).
Usage
is_empty_caugi(cg)
Arguments
cg |
A |
Value
A logical value indicating whether the graph is empty.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_empty <- caugi(class = "DAG")
is_empty_caugi(cg_empty) # TRUE
cg_non_empty <- caugi(
A %-->% B,
class = "DAG"
)
is_empty_caugi(cg_non_empty) # FALSE
cg_no_edges_but_has_nodes <- caugi(
A, B,
class = "DAG"
)
is_empty_caugi(cg_no_edges_but_has_nodes) # FALSE
Is the caugi graph a PDAG?
Description
Checks if the given caugi graph is a
Partially Directed Acyclic Graph (PDAG).
Usage
is_pdag(cg, force_check = FALSE)
Arguments
cg |
A |
force_check |
Logical; if |
Value
A logical value indicating whether the graph is a PDAG.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_dag_class <- caugi(
A %-->% B,
class = "DAG"
)
is_pdag(cg_dag_class) # TRUE
cg_dag_but_pdag_class <- caugi(
A %-->% B,
class = "PDAG"
)
is_pdag(cg_dag_but_pdag_class) # TRUE
cg_cyclic <- caugi(
A %-->% B,
B %-->% C,
C %-->% A,
D %---% A,
class = "UNKNOWN",
simple = FALSE
)
is_pdag(cg_cyclic) # FALSE
cg_undirected <- caugi(
A %---% B,
class = "UNKNOWN"
)
is_pdag(cg_undirected) # TRUE
cg_pag <- caugi(
A %o->% B,
class = "UNKNOWN"
)
is_pdag(cg_pag) # FALSE
Is the caugi graph an UG?
Description
Checks if the given caugi graph is an undirected graph (UG).
Usage
is_ug(cg, force_check = FALSE)
Arguments
cg |
A |
force_check |
Logical; if |
Value
A logical value indicating whether the graph is an UG.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg_ug_class <- caugi(
A %---% B,
class = "UG"
)
is_ug(cg_ug_class) # TRUE
cg_not_ug <- caugi(
A %-->% B,
class = "DAG"
)
is_ug(cg_not_ug) # FALSE
Is a backdoor set valid?
Description
Checks whether Z is a valid backdoor adjustment set for
X --> Y.
Usage
is_valid_backdoor(
cg,
X = NULL,
Y = NULL,
Z = NULL,
X_index = NULL,
Y_index = NULL,
Z_index = NULL
)
Arguments
cg |
A |
X, Y |
Single node names. |
Z |
Optional node set for conditioning |
X_index, Y_index, Z_index |
Optional 1-based indices. |
Value
Logical value indicating if backdoor is valid or not.
See Also
Other adjustment:
adjustment_set(),
all_backdoor_sets(),
d_separated()
Examples
cg <- caugi(
C %-->% X,
X %-->% F,
X %-->% D,
A %-->% X,
A %-->% K,
K %-->% Y,
D %-->% Y,
D %-->% G,
Y %-->% H,
class = "DAG"
)
is_valid_backdoor(cg, X = "X", Y = "Y", Z = NULL) # FALSE
is_valid_backdoor(cg, X = "X", Y = "Y", Z = "K") # TRUE
is_valid_backdoor(cg, X = "X", Y = "Y", Z = c("A", "C")) # TRUE
Length of a caugi
Description
Returns the number of nodes in the graph.
Arguments
x |
A |
Value
An integer representing the number of nodes.
See Also
Other caugi methods:
print()
Examples
cg <- caugi(
A %-->% B,
class = "DAG"
)
length(cg) # 2
cg2 <- caugi(
A %-->% B + C,
nodes = LETTERS[1:5],
class = "DAG"
)
length(cg2) # 5
Get Markov blanket of nodes in a caugi
Description
Get Markov blanket of nodes in a caugi
Usage
markov_blanket(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
neighbors(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
markov_blanket(cg, "A") # "B"
markov_blanket(cg, index = 2) # "A" "C"
markov_blanket(cg, "B") # "A" "C"
markov_blanket(cg, c("B", "C"))
#> $B
#> [1] "A" "C"
#>
#> $C
#> [1] "B"
Moralize a DAG
Description
Moralizing a DAG involves connecting all parents of each node and then converting all directed edges into undirected edges.
Usage
moralize(cg)
Arguments
cg |
A |
Details
This changes the graph from a Directed Acyclic Graph (DAG) to an Undirected Graph (UG), also known as a Markov Graph.
Value
A caugi object representing the moralized graph (UG).
See Also
Other operations:
mutate_caugi(),
skeleton()
Examples
cg <- caugi(A %-->% C, B %-->% C, class = "DAG")
moralize(cg) # A -- B, A -- C, B -- C
Mutate caugi class
Description
Mutate the caugi class from one graph class to another, if possible.
For example, convert a DAG to a PDAG, or a fully directed caugi of
class UNKNOWN to a DAG. Throws an error if not possible.
Usage
mutate_caugi(cg, class)
Arguments
cg |
A |
class |
A character string specifying the new class. |
Details
This function returns a copy of the object, and the original remains unchanged.
Value
A caugi object of the specified class.
See Also
Other operations:
moralize(),
skeleton()
Examples
cg <- caugi(A %-->% B, class = "UNKNOWN")
cg_dag <- mutate_caugi(cg, "DAG")
Get neighbors of nodes in a caugi
Description
Get neighbors of nodes in a caugi
Usage
neighbors(cg, nodes = NULL, index = NULL)
neighbours(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
nodes(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
neighbors(cg, "A") # "B"
neighbors(cg, index = 2) # "A" "C"
neighbors(cg, "B") # "A" "C"
neighbors(cg, c("B", "C"))
#> $B
#> [1] "A" "C"
#>
#> $C
#> [1] "B"
Get nodes or edges of a caugi
Description
Get nodes or edges of a caugi
Usage
nodes(cg)
vertices(cg)
V(cg)
Arguments
cg |
A |
Value
A data.table with a name column.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
parents(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
D,
class = "DAG"
)
nodes(cg) # returns the data.table with nodes A, B, C, D
Get parents of nodes in a caugi
Description
Get parents of node in a graph. Note that not both nodes and index can be given.
Usage
parents(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
Either a character vector of node names (if a single node is requested) or a list of character vectors (if multiple nodes are requested).
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
same_nodes(),
subgraph()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
parents(cg, "A") # NULL
parents(cg, index = 2) # "A"
parents(cg, "B") # "A"
parents(cg, c("B", "C"))
#> $B
#> [1] "A"
#>
#> $C
#> [1] "B"
Print a caugi
Description
Print a caugi
Arguments
x |
A |
max_nodes |
Optional numeric; maximum number of node names to consider.
If |
max_edges |
Optional numeric; maximum number of edges to consider.
If |
... |
Not used. |
Value
The input caugi object, invisibly.
See Also
Other caugi methods:
length()
Examples
cg <- caugi(A %-->% B, class = "DAG")
print(cg)
Register a new edge type in the global registry.
Description
Register a new edge type in the global registry.
Usage
register_caugi_edge(glyph, tail_mark, head_mark, class, symmetric = FALSE)
Arguments
glyph |
A string representing the edge glyph (e.g., |
tail_mark |
One of "arrow", "tail", "circle", "other". |
head_mark |
One of "arrow", "tail", "circle", "other". |
class |
One of "directed","undirected","bidirected","partial". |
symmetric |
Logical. |
Value
TRUE, invisibly.
See Also
Other registry:
registry
Examples
# first, for reproducability, we reset the registry to default
reset_caugi_registry()
# create a new registry
reg <- caugi_registry()
# register an edge
register_caugi_edge(
glyph = "<--",
tail_mark = "arrow",
head_mark = "tail",
class = "directed",
symmetric = FALSE
)
# now, this edge is available for caugi graphs:
cg <- caugi(A %-->% B, B %<--% C, class = "DAG")
# reset the registry to default
reset_caugi_registry()
caugi edge registry
Description
The caugi edge registry stores information about the different edge types
that can be used in caugi graphs. It maps edge glyphs (e.g., "-->",
"<->", "o->", etc.) to their specifications, including tail and head
marks, class, and symmetry. The registry allows for dynamic registration of
new edge types, enabling users to extend the set of supported edges in
caugi. It is implemented as a singleton, ensuring that there is a single
global instance of the registry throughout the R session.
Usage
caugi_registry()
reset_caugi_registry()
seal_caugi_registry()
Details
The intented use of the caugi registry is mostly for advanced users and
developers. The registry enables users who need to define their own custom
edge types in caugi directly. . It currently mostly supports the
representation of new edges, but for users that might want to represent
reverse edges, this preserves correctness of reason over these edges.
Value
An edge_registry external pointer.
Functions
-
caugi_registry(): Access the global edge registry, creating it if needed. -
reset_caugi_registry(): Reset the global edge registry to its default state. -
seal_caugi_registry(): Seal the global edge registry to prevent further modifications.
See Also
Other registry:
register_caugi_edge()
Examples
# first, for reproducability, we reset the registry to default
reset_caugi_registry()
# create a new registry
reg <- caugi_registry()
# register an edge
register_caugi_edge(
glyph = "<--",
tail_mark = "arrow",
head_mark = "tail",
class = "directed",
symmetric = FALSE
)
# now, this edge is available for caugi graphs:
cg <- caugi(A %-->% B, B %<--% C, class = "DAG")
# reset the registry to default
reset_caugi_registry()
Same nodes?
Description
Check if two caugi objects have the same nodes.
Usage
same_nodes(cg1, cg2, throw_error = FALSE)
Arguments
cg1 |
A |
cg2 |
A |
throw_error |
Logical; if |
Value
A logical indicating if the two graphs have the same nodes.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
subgraph()
Examples
cg1 <- caugi(
A %-->% B,
class = "DAG"
)
cg2 <- caugi(
A %-->% B + C,
class = "DAG"
)
same_nodes(cg1, cg2) # FALSE
Structural Hamming Distance
Description
Compute the Structural Hamming Distance (SHD) between two graphs.
Usage
shd(cg1, cg2, normalized = FALSE)
Arguments
cg1 |
A |
cg2 |
A |
normalized |
Logical; if |
Value
An integer representing the Hamming Distance between the two graphs,
if normalized = FALSE, or a numeric between 0 and 1 if normalized = TRUE.
See Also
Examples
cg1 <- caugi(A %-->% B %-->% C, D %-->% C, class = "DAG")
cg2 <- caugi(A %-->% B %-->% C, D %---% C, class = "PDAG")
shd(cg1, cg2) # 1
Get the skeleton of a graph
Description
The skeleton of a graph is obtained by replacing all directed edges with undirected edges.
Usage
skeleton(cg)
Arguments
cg |
A |
Details
This changes the graph from any class to an Undirected Graph (UG), also known as a Markov Graph.
Value
A caugi object representing the skeleton of the graph (UG).
See Also
Other operations:
moralize(),
mutate_caugi()
Examples
cg <- caugi(A %-->% B, class = "DAG")
skeleton(cg) # A --- B
Get the induced subgraph
Description
Get the induced subgraph
Usage
subgraph(cg, nodes = NULL, index = NULL)
Arguments
cg |
A |
nodes |
A vector of node names, a vector of unquoted
node names, or an expression combining these with |
index |
A vector of node indexes. |
Value
A new caugi that is a subgraph of the selected nodes.
See Also
Other queries:
ancestors(),
children(),
descendants(),
edge_types(),
edges(),
exogenous(),
is_acyclic(),
is_caugi(),
is_cpdag(),
is_dag(),
is_empty_caugi(),
is_pdag(),
is_ug(),
markov_blanket(),
neighbors(),
nodes(),
parents(),
same_nodes()
Examples
cg <- caugi(
A %-->% B,
B %-->% C,
class = "DAG"
)
sub_cg <- subgraph(cg, c("B", "C"))
cg2 <- caugi(B %-->% C, class = "DAG")
all(nodes(sub_cg) == nodes(cg2)) # TRUE
all(edges(sub_cg) == edges(cg2)) # TRUE