
Package ‘checked’
July 26, 2024

Title Systematically Run R CMD Checks

Version 0.2.0

Description Systematically Run R checks against multiple packages. Checks are run in
parallel with strategies to minimize dependency installation. Provides
out of the box interface for running reverse dependency check.

URL https://github.com/Genentech/checked

BugReports https://github.com/Genentech/checked/issues

License MIT + file LICENSE

Encoding UTF-8

Imports callr, cli, igraph, jsonlite, R6, rcmdcheck, utils (>= 3.6.2),
tools

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/Needs/website r-lib/asciicast

Config/testthat/edition 3

NeedsCompilation no

Author Szymon Maksymiuk [cre, aut] (<https://orcid.org/0000-0002-3120-1601>),
Doug Kelkhoff [aut] (<https://orcid.org/0009-0003-7845-4061>),
F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Szymon Maksymiuk <sz.maksymiuk@gmail.com>

Repository CRAN

Date/Publication 2024-07-26 02:20:02 UTC

Contents
checked-package . 2
ansi . 3
checks_capture . 3
checks_df . 4
checks_simplify . 5

1

https://github.com/Genentech/checked
https://github.com/Genentech/checked/issues
https://orcid.org/0000-0002-3120-1601
https://orcid.org/0009-0003-7845-4061

2 checked-package

check_design . 6
check_functions . 8
devnull . 10
package_spec . 10
print.checked_results . 11
results . 12
run . 12
silent_spinner . 13
task_graph_create . 13
task_graph_neighborhoods . 14
task_graph_sort . 14
task_graph_which_satisfied . 15
task_spec . 16
throttle . 17

Index 18

checked-package checked: Systematically Run R CMD Checks

Description

Systematically Run R checks against multiple packages. Checks are run in parallel with strategies to
minimize dependency installation. Provides out of the box interface for running reverse dependency
check.
Systematically Run R checks against multiple packages. Checks are run in parallel with strategies to
minimize dependency installation. Provides out of the box interface for running reverse dependency
check.

Author(s)

Maintainer: Szymon Maksymiuk <sz.maksymiuk@gmail.com> (ORCID)
Authors:

• Doug Kelkhoff <doug.kelkhoff@gmail.com> (ORCID)

Other contributors:

• F. Hoffmann-La Roche AG [copyright holder, funder]

See Also

Useful links:

• https://github.com/Genentech/checked

• Report bugs at https://github.com/Genentech/checked/issues

Useful links:

• https://github.com/Genentech/checked

• Report bugs at https://github.com/Genentech/checked/issues

https://orcid.org/0000-0002-3120-1601
https://orcid.org/0009-0003-7845-4061
https://github.com/Genentech/checked
https://github.com/Genentech/checked/issues
https://github.com/Genentech/checked
https://github.com/Genentech/checked/issues

ansi 3

ansi Various utilities for formatting ANSI output

Description

Various utilities for formatting ANSI output

Usage

ansi_line_erase(n = "")

ansi_move_line_rel(n)

Arguments

n The number of lines to move. Positive is up, negative is down.

Functions

• ansi_line_erase(): Erase the current line

• ansi_move_line_rel(): Offset the cursor by a relative number of lines

checks_capture Parse R CMD checks from a partial check output string

Description

Parse R CMD checks from a partial check output string

Usage

checks_capture(x)

Arguments

x A string, compsoed of any subsection of R CMD check console output

Value

A matrix of matches and capture groups "check" and "status" ("OK", "NONE", "NOTE", "WARN-
ING" or "ERROR").

4 checks_df

Examples

check_output <- "
* checking check one ... OK
* checking check two ... NOTE
* checking tests ...

Running test_abc.R
Running test_xyz.R
NONE

* checking check three ... WARNING
* ch
"

checks_capture(check_output)

checks_df Check schedule data frame

Description

Create data.frame which each row defines a package for which R CMD check should be run. Such
data.frame is a prerequisite for generating check_design which orchestrates all the processes in-
cluding dependencies installation.

Usage

rev_dep_check_tasks_df(
path,
repos = getOption("repos"),
versions = c("dev", "release")

)

source_check_tasks_df(path)

Arguments

path path to the package source. See Details.

repos repository used to identify reverse dependencies.

versions character vector indicating against which versions of the package reverse depen-
dency should be checked. c("dev", "release") (default) stands for the classi-
cal reverse dependency check. "dev" checks only against development version
of the package which is applicable mostly when checking whether adding new
package would break tests of packages already in the repository and take the
package as suggests dependency.

checks_simplify 5

Details

rev_dep_check_tasks_df generates checks schedule data.frame appropriate for running reverse
dependency check for certain source package. In such case path parameter should point to the
source of the development version of the package and repos should be a repository for which
reverse dependencies should be identified.

source_check_tasks_df generates checks schedule data.frame for all source packages specified
by the path. Therefore it accepts it to be a vector of an arbitrary length.

Value

The check schedule data.frame has strict structure and consists of following columns:

• alias The alias of the check to run. It also serves the purpose of u unique identifier and node
name in the task graph.

• version Version of the package to be checked.

• package Object that inherits from check_task_spec. Defines how package to be checked
can be acquired.

• custom Object that inherits from custom_install_task_spec. Defines custom package, for
instance only available from local source, that should be installed before checking the package.

checks_simplify Simplify Captures into Vector

Description

Simplify Captures into Vector

Usage

checks_simplify(x)

Arguments

x Matrix of regex captures as produced by checks_capture.

Value

A vector of check status, with names indicating the check

6 check_design

check_design Check Design Object

Description

Abstract object that drives all separate processes required to run R CMD check sequence.

Public fields

graph (igraph::igraph())
A dependency graph, storing information about which dependencies are required prior to ex-
ecution of each check task. Created with task_graph_create

input (data.fragme())
Checks data.frame which is the source of all the checks Created with source_check_tasks_df

output (character(1))
Output directory where raw results and temporary library will be created and stored.

Methods

Public methods:
• check_design$new()

• check_design$active_processes()

• check_design$failed_tasks()

• check_design$terminate()

• check_design$step()

• check_design$start_next_task()

• check_design$is_done()

• check_design$clone()

Method new(): Initialize a new check design
Use checks data.frame to generate task graph in which all dependencies and installation order are
embedded.

Usage:
check_design$new(
df,
n = 2L,
output = tempfile(paste(packageName(), Sys.Date(), sep = "-")),
lib.loc = .libPaths(),
repos = getOption("repos"),
restore = TRUE,
...

)

Arguments:
df checks data.frame.

check_design 7

n integer value indicating maximum number of subprocesses that can be simultaneously spawned
when executing tasks.

output character value specifying path where the output should be stored.
lib.loc character vector with libraries allowed to be used when checking packages, defaults

to entire .libPaths().
repos character vector of repositories which will be used when generating task graph and later

pulling dependencies.
restore logical value, whether output directory should be unlinked before running checks. If

FALSE, an attempt will me made to restore previous progress from the same output

... other parameters

Returns: check_design.

Method active_processes(): Get Active Processes list

Usage:
check_design$active_processes()

Method failed_tasks(): Get Failed Tasks list

Usage:
check_design$failed_tasks()

Method terminate(): Terminate Design Processes
Immediately terminates all the active processes.

Usage:
check_design$terminate()

Method step(): Fill Available Processes with Tasks

Usage:
check_design$step()

Returns: A logical value, indicating whether processes are actively running.

Method start_next_task(): Start Next Task

Usage:
check_design$start_next_task()

Returns: A integer value, coercible to logical to indicate whether a new process was spawned,
or -1 if all tasks have finished.

Method is_done(): Check if checks are done
Checks whether all the scheduled tasks were successfully executed.

Usage:
check_design$is_done()

Method clone(): The objects of this class are cloneable with this method.

Usage:
check_design$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

8 check_functions

Examples

Not run:
library(checked)
df <- source_check_tasks_df(c(
system.file("example_packages", "exampleBad", package = "checked"),
system.file("example_packages", "exampleGood", package = "checked")

))

plan <- check_design$new(df, n = 10, repos = "https://cran.r-project.org/")
while (!plan$is_done()) {
plan$start_next_task()

}

End(Not run)

check_functions Check functions

Description

Set of functions to run orchestrated R CMD checks and automatically manage the dependencies in-
stallation. Each functions prepares the plan based on the supplied package source(s) which includes
installing dependencies and running required R CMD checks. All the functions are parallelized
through sperate processes

Usage

check_reverse_dependencies(
path,
n = 2L,
output = tempfile(paste(utils::packageName(), Sys.Date(), sep = "-")),
lib.loc = .libPaths(),
repos = getOption("repos"),
reverse_repos = repos,
restore = TRUE,
reporter = default_reporter(),
...

)

check_reverse_dependencies_development(
path,
n = 2L,
output = tempfile(paste(utils::packageName(), Sys.Date(), sep = "-")),
lib.loc = .libPaths(),
repos = getOption("repos"),
restore = TRUE,
reporter = default_reporter(),

check_functions 9

...
)

check_packages(
path,
n = 2L,
output = tempfile(paste(utils::packageName(), Sys.Date(), sep = "-")),
lib.loc = .libPaths(),
repos = getOption("repos"),
restore = TRUE,
reporter = default_reporter(),
...

)

check_dir(
path,
n = 2L,
output = tempfile(paste(utils::packageName(), Sys.Date(), sep = "-")),
lib.loc = .libPaths(),
repos = getOption("repos"),
restore = TRUE,
reporter = default_reporter(),
...

)

Arguments

path path to the package source.

n integer value indicating maximum number of subprocesses that can be simulta-
neously spawned when executing tasks.

output character value specifying path where the output should be stored.

lib.loc character vector with libraries allowed to be used when checking packages, de-
faults to entire .libPaths().

repos character vector of repositories which will be used when generating task graph
and later pulling dependencies.

reverse_repos character vector of repositories which will be used to pull sources for reverse
dependencies. In some cases, for instance using binaries on Linux, we want
to use different repositories when pulling sources to check and different when
installing dependencies.

restore logical value, whether output directory should be unlinked before running checks.
If FALSE, an attempt will me made to restore previous progress from the same
output

reporter A reporter to provide progress updates. Will default to the most expressive
command-line reporter given your terminal capabilities.

... other parameters

10 package_spec

Details

check_reverse_dependencies runs classical reverse dependency check for the given source pack-
age. It first identifies reverse dependencies available in repos. Then, after installing all required
dependencies, it runs the R CMD check twice for each package, one time with the release version
of the package and the second time with the development version. Both R CMD checks are later
compared to get the result.

check_reverse_dependencies_development works similarly to check_reverse_dependencies
but it runs R CMD check only once for each package, with the development version of the package
installed. It is advantageous to check whether adding a new package into repository breaks existing
packages that possibly take said package as Suggests dependency.

check_packages Installs all dependencies and runs parallelly R CMD checks for all source pack-
ages specified by path parameter

check_dir Identifies all R packages in the given directory (non-recursively) and passes them to the
check_packages

Value

check_design R6 class storing all the details regarding checks that run. Can be combined with
results and summary methods to generate results.

devnull Reuse or Create A Null File Connection

Description

Reuse or Create A Null File Connection

Usage

devnull()

package_spec Package specification

Description

Create package specification list which consists of all the details required to identify and acquire
source of the package.

Usage

package_spec(name = NULL, repos = NULL)

package_spec_source(path = NULL, ...)

package_spec_archive_source(path = NULL, ...)

print.checked_results 11

Arguments

name name of the package.

repos repository where package with given name should identified.

path path to the source of the package (either bundled or not). URLs are acceptable.

... parameters passed to downstream constructors

print.checked_results Plot checked results

Description

Plot checked results

Usage

S3 method for class 'checked_results'
print(x, ...)

S3 method for class 'checked_results_check_task_spec'
print(
x,
keep = Sys.getenv("CHECKED_RESULTS_KEEP", c("all", "issues", "potential_issues")[1]),
...

)

S3 method for class 'checked_results_revdep_check_task_spec'
print(x, ...)

Arguments

x an object to be printed.

... other parameters described below

keep character vector indicating which packages should be included in the results.
"all" means that all packages are kept. If "issues" then only packages with
issues identified, whereas "potential_issues" stands for keeping packages with
both "issues" and "potential_issues". Users can set the default value via env
variable CHECKED_RESULTS_KEEP.

12 run

results Check results

Description

Get R CMD check results

Usage

results(x, ...)

S3 method for class 'check_design'
results(
x,
error_on = Sys.getenv("CHECKED_RESULTS_ERROR_ON", c("never", "issues",
"potential_issues")[1]),

...
)

Arguments

x check_design object.
... other parameters.
error_on character vector indicating whether R error should be thrown when issues are

discovered when generating results. "never" means that no errors are thrown. If
"issues" then errors are emitted only on issues, whereas "potential issues" stands
for error on both issues and potential issues. Users can set the default value via
env variable CHECKED_RESULTS_ERROR_ON.

run Run Reverse-Dependency Checks

Description

Run Reverse-Dependency Checks

Usage

run(design, ..., reporter = default_reporter())

Arguments

design A reverse-dependency plan, or an object coercible into a plan.
... Additional arguments
reporter A reporter to provide progress updates. Will default to the most expressive

command-line reporter given your terminal capabilities.

silent_spinner 13

silent_spinner Create a ’cli’ Spinner With Suppressed Output

Description

’cli’ will implicitly push spinner output to various output streams, affecting the terminal cursor po-
sition. To allow for a terminal interface that has spinners above the last line, this function suppresses
the output and simply returns its frame contents.

Usage

silent_spinner(..., stream = devnull())

Arguments

... passed to cli::make_spinner

stream passed to cli::make_spinner, defaults to a null file device

Value

A interface similar to a ’cli’ spinner, but with suppressed output

task_graph_create Create Task Graph

Description

Create Task Graph

Usage

task_graph_create(df, repos = getOption("repos"))

Arguments

df data.frame listing

repos repositories which will be used to identify dependencies chain to run R CMD
checks

Value

A dependency graph with vertex attributes "root" (a logical value indicating whether the package
as one of the roots used to create the graph), "status" (installation status) and "order" (installation
order).

14 task_graph_sort

task_graph_neighborhoods

Find Task Neighborhood

Description

Find Task Neighborhood

Usage

task_graph_neighborhoods(g, nodes)

Arguments

g A task graph, as produced with task_graph_create()

nodes Names or nodes objects of packages whose neighborhoods should be calculated.

task_graph_sort Sort Task Graph by Strong Dependency Order

Description

Sort Task Graph by Strong Dependency Order

Usage

task_graph_sort(g)

Arguments

g A igraph::graph, expected to contain node attribute type.

Value

The igraph::graph g, with vertices sorted in preferred installation order.

Note

Cyclic dependencies are possible. Cyclic dependencies are disallowed for all hard dependencies on
CRAN today, though there have been historical instances where they appeared on CRAN.

Installation priority is based on:

1. Total dependency footprint (low to high)

2. Topology (leaf nodes first)

task_graph_which_satisfied 15

task_graph_which_satisfied

Find the Next Packages Not Dependent on an Unavailable Package

Description

While other packages are in progress, ensure that the next selected package already has its depen-
dencies done.

Usage

task_graph_which_satisfied(
g,
v = igraph::V(g),
dependencies = TRUE,
status = STATUS$pending

)

task_graph_which_satisfied_strong(..., dependencies = "strong")

task_graph_which_check_satisfied(
g,
...,
dependencies = "all",
status = STATUS$pending

)

task_graph_which_install_satisfied(
g,
...,
dependencies = "strong",
status = STATUS$pending

)

Arguments

g A dependency graph, as produced with task_graph_create().

v Names or nodes objects of packages whose satisfiability should be checked.

dependencies Which dependencies types should be met for a node to be considered satisfied.

status status name. Nodes in v fill be filtered to consists only nodes with that status.

... parametrs passed to down-stream functions.

Details

There are helpers defined for particular use cases that strictly rely on the task_graph_which_satisfied,
they are:

16 task_spec

task_graph_which_satisfied_strong - List vertices whose strong dependencies are satisfied.

task_graph_which_check_satisfied - List root vertices whose all dependencies are satisfied.

task_graph_which_install_satisfied - List install vertices whose dependencies are all satis-
fied

Value

The name of the next package to prioritize

task_spec Task specification

Description

Create task specification list which consists of all the details required to run specific task.

Usage

task_spec(alias = NULL, package_spec = NULL, env = NULL)

install_task_spec(type = getOption("pkgType"), INSTALL_opts = NULL, ...)

custom_install_task_spec(...)

check_task_spec(args = NULL, build_args = NULL, ...)

revdep_check_task_spec(revdep, ...)

Arguments

alias task alias which also serves as unique identifier of the task.

package_spec package_spec object

env environmental variables to be set in separate process running specific task.

type character, indicating the type of package to download and install. Will be "source"
except on Windows and some macOS builds: see the section on ‘Binary pack-
ages’ for those.

INSTALL_opts an optional character vector of additional option(s) to be passed to R CMD INSTALL
for a source package install. E.g., c("--html", "--no-multiarch", "--no-test-load").
Can also be a named list of character vectors to be used as additional options,
with names the respective package names.

... parameters passed to downstream constructors

throttle 17

args Character vector of arguments to pass to R CMD check. Pass each argument
as a single element of this character vector (do not use spaces to delimit ar-
guments like you would in the shell). For example, to skip running of exam-
ples and tests, use args = c("--no-examples", "--no-tests") and not args
= "--no-examples --no-tests". (Note that instead of the --output option
you should use the check_dir argument, because --output cannot deal with
spaces and other special characters on Windows.)

build_args Character vector of arguments to pass to R CMD build. Pass each argument
as a single element of this character vector (do not use spaces to delimit argu-
ments like you would in the shell). For example, build_args = c("--force",
"--keep-empty-dirs") is a correct usage and build_args = "--force --keep-empty-dirs"
is incorrect.

revdep character indicating whether the task specification describes check associated
with the development (new) or release (old) version of the for which reverse
dependency check is run.

throttle Generate A Rate Limiting Throttle Function

Description

Generate A Rate Limiting Throttle Function

Usage

throttle(interval = 0.2)

Arguments

interval An interval (in seconds) that is the minimum interval before throttle will return
TRUE.

Value

A throttling function with the provided interval. When called, returns a logical value indicating
whether the throttle interval has passed (TRUE if the interval has not yet passed).

Index

ansi, 3
ansi_line_erase (ansi), 3
ansi_move_line_rel (ansi), 3

check_design, 4, 6, 7, 10, 12
check_dir (check_functions), 8
check_functions, 8
check_packages (check_functions), 8
check_reverse_dependencies

(check_functions), 8
check_reverse_dependencies_development

(check_functions), 8
check_task_spec, 5
check_task_spec (task_spec), 16
checked-package, 2
checks_capture, 3, 5
checks_df, 4
checks_simplify, 5
cli::make_spinner, 13
custom_install_task_spec, 5
custom_install_task_spec (task_spec), 16

devnull, 10

igraph::graph, 14
install_task_spec (task_spec), 16

package_spec, 10, 16
package_spec_archive_source

(package_spec), 10
package_spec_source (package_spec), 10
print.checked_results, 11
print.checked_results_check_task_spec

(print.checked_results), 11
print.checked_results_revdep_check_task_spec

(print.checked_results), 11

results, 10, 12
rev_dep_check_tasks_df (checks_df), 4
revdep_check_task_spec (task_spec), 16
run, 12

silent_spinner, 13
source_check_tasks_df, 6
source_check_tasks_df (checks_df), 4

task_graph_create, 6, 13
task_graph_create(), 14, 15
task_graph_neighborhoods, 14
task_graph_sort, 14
task_graph_which_check_satisfied

(task_graph_which_satisfied),
15

task_graph_which_install_satisfied
(task_graph_which_satisfied),
15

task_graph_which_satisfied, 15
task_graph_which_satisfied_strong

(task_graph_which_satisfied),
15

task_spec, 16
throttle, 17, 17

18

	checked-package
	ansi
	checks_capture
	checks_df
	checks_simplify
	check_design
	check_functions
	devnull
	package_spec
	print.checked_results
	results
	run
	silent_spinner
	task_graph_create
	task_graph_neighborhoods
	task_graph_sort
	task_graph_which_satisfied
	task_spec
	throttle
	Index

