The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.


chunkR devel blank chunkR icon

Build Status AppVeyor Build Status R Coverage status







This package allows to read large text tables in chunks, using a fast C++ backend. Text files can be imported as data frames (with automatic column type detection option) or matrices. The program is designed to be simple and user-friendly.

chunkR is based on three basic functions: chunker, to create a connection to a text file; next_chunk() to read the next chunk, and get_table() to retrieve the corresponding data chunk.

These functions can be easily included in loops and other source code, using the return value of the next_chunk() function, that is TRUE when a new chunk is available and FALSE when the file was totally read, respectively. The get_table() function, returns an empty data frame/matrix when next_chunk() is FALSE. See the examples below.

Installation

library(devtools)
install_github("leandroroser/chunkR")

Examples

data(iris)

# write iris as tab delimited file. Note that quote is set to FALSE
tmp_path <- file.path(tempdir(),"iris.txt")
write.table(iris, tmp_path, quote = FALSE)
+#-----------------------------------------------------------------#
+#--- Reading a data frame with automatic column-type detection ---#
+#-----------------------------------------------------------------#
# create a 'chunker' object passing the path of the input file.
my_chunker_object <- chunker(tmp_path, chunksize = 30)

# read a chunk
next_chunk(my_chunker_object)

# get the chunk
 get_table(my_chunker_object)

# read another chunk
next_chunk(my_chunker_object)

# get the number of lines already read
get_completed(my_chunker_object)
-#---- Quoted data --------#
write.table(iris, tmp_path, quote = TRUE)

my_chunker_object <- chunker(tmp_path, quoted = TRUE, chunksize = 30)

next_chunk(my_chunker_object)

get_table(my_chunker_object)
-#---- Data without rownames and/or colnames ----#
tmp_path <- file.path(tempdir(),"iris.txt")
write.table(iris, tmp_path, row.names = FALSE, col.names = FALSE)

my_chunker_object2 <- chunker(tmp_path, quoted = TRUE, chunksize = 30,
has_rownames = FALSE, has_colnames = FALSE)

next_chunk(my_chunker_object2)

get_table(my_chunker_object2) # automatic generation of rownames and/or colnames
-#--- read a csv file ---#
tmp_path_csv <- file.path(tempdir(),"iris.csv")

write.table(iris, tmp_path_csv, quote = FALSE, sep = ",")

# read the csv indicating the value of the sep parameter
my_chunker_object3 <- chunker(tmp_path_csv, chunksize = 30, sep = ",")
# the file can  then be processed as with tab delimiters

next_chunk(my_chunker_object3)
get_table(my_chunker_object3)

# remove temporal file
file.remove(tmp_path_csv)
+#--------------------------------------------------------#
+#--- Reading a data frame using column types argument ---#
+#--------------------------------------------------------#
## Four types can be passed : "character", "numeric" (aka "double"), "integer", "logical"

# create a 'chunker' object passing the path of the input file.
my_chunker_object4 <- chunker(tmp_path, chunksize = 120,
 columns_classes = c("numeric", "numeric", "numeric","numeric", "character"))

# read a chunk
next_chunk(my_chunker_object4)

# get the chunk
get_table(my_chunker_object4)

# read another chunk
next_chunk(my_chunker_object4)

# get the number of lines already read
get_completed(my_chunker_object4)
+#-------------------------#
+#--- Reading a matrix  ---#
+#-------------------------#
my_chunker_object5 <- chunker(tmp_path, chunksize = 30, data_format= "matrix")

# read a chunk
next_chunk(my_chunker_object5)

# store the chunk as a character matrix in R
this_data <- get_table(my_chunker_object5)


# The package provides a fast generic C++ function for conversion from
# matrix (any R type) to data frame
this_data_as_df2 <- matrix2df(this_data)

# remove temporal file
file.remove(tmp_path)
+#----------------------------------#
+#--- Example with a big table -----#
+#----------------------------------#
-### Example with a data frame
# create a large data frame, and write it in a temporal directory

tmp_path <- file.path(tempdir(),"big_table.txt")

out <- data.frame(numeric_data = runif(1000000),
                  character_data = sample(c("a", "t", "c", "g"), 1000000, 
                  replace = TRUE),
                  integer_data = sample(1000000),
                  bool_data = sample(c(TRUE, FALSE), 1000000, replace = TRUE))


write.table(out, tmp_path, quote = FALSE)

# create a chunker object, reading in chunks of 10000 lines
my_chunker_object6 <- chunker(tmp_path, chunksize = 10000)

next_chunk(my_chunker_object6)
data <- get_table(my_chunker_object6) 

# check classes
lapply(data,typeof)
file.remove(tmp_path)
-### Example with a matrix
# create a large matrix, and write it in a temporal directory

my_table <- tempfile()
write.table(matrix(sample(c("a", "t", "c", "g"), 1000000, replace = TRUE), 
100000, 1000), my_table, quote = FALSE)

# create a chunker object, reading in chunks of 10000 lines
my_chunker_object7 <- chunker(my_table, chunksize = 10000, data_format= "matrix")

# create a loop to read all the file and do something with it

lines <- 0
while(next_chunk(my_chunker_object7))
{
  data <- get_table(my_chunker_object7) 
  
  # do something with data, e.g., convert to data frame first
  data <- matrix2df(data)
  
  lines <- lines + nrow(data)
  cat("Processed ", lines, "lines\n")
}

# remove the temporal file
file.remove(my_table)

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.