The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This package allows to read large text
tables in chunks, using a fast C++ backend. Text files can be imported
as data frames (with automatic column type detection option) or
matrices. The program is designed to be simple and user-friendly.
chunkR is based on three basic functions: chunker, to create a connection to a text file; next_chunk() to read the next chunk, and get_table() to retrieve the corresponding data chunk.
These functions can be easily included in loops and other source code, using the return value of the next_chunk() function, that is TRUE when a new chunk is available and FALSE when the file was totally read, respectively. The get_table() function, returns an empty data frame/matrix when next_chunk() is FALSE. See the examples below.
library(devtools)
install_github("leandroroser/chunkR")
data(iris)
# write iris as tab delimited file. Note that quote is set to FALSE
<- file.path(tempdir(),"iris.txt")
tmp_path write.table(iris, tmp_path, quote = FALSE)
+#-----------------------------------------------------------------#
+#--- Reading a data frame with automatic column-type detection ---#
+#-----------------------------------------------------------------#
# create a 'chunker' object passing the path of the input file.
<- chunker(tmp_path, chunksize = 30)
my_chunker_object
# read a chunk
next_chunk(my_chunker_object)
# get the chunk
get_table(my_chunker_object)
# read another chunk
next_chunk(my_chunker_object)
# get the number of lines already read
get_completed(my_chunker_object)
-#---- Quoted data --------#
write.table(iris, tmp_path, quote = TRUE)
<- chunker(tmp_path, quoted = TRUE, chunksize = 30)
my_chunker_object
next_chunk(my_chunker_object)
get_table(my_chunker_object)
-#---- Data without rownames and/or colnames ----#
<- file.path(tempdir(),"iris.txt")
tmp_path write.table(iris, tmp_path, row.names = FALSE, col.names = FALSE)
<- chunker(tmp_path, quoted = TRUE, chunksize = 30,
my_chunker_object2 has_rownames = FALSE, has_colnames = FALSE)
next_chunk(my_chunker_object2)
get_table(my_chunker_object2) # automatic generation of rownames and/or colnames
-#--- read a csv file ---#
<- file.path(tempdir(),"iris.csv")
tmp_path_csv
write.table(iris, tmp_path_csv, quote = FALSE, sep = ",")
# read the csv indicating the value of the sep parameter
<- chunker(tmp_path_csv, chunksize = 30, sep = ",")
my_chunker_object3 # the file can then be processed as with tab delimiters
next_chunk(my_chunker_object3)
get_table(my_chunker_object3)
# remove temporal file
file.remove(tmp_path_csv)
+#--------------------------------------------------------#
+#--- Reading a data frame using column types argument ---#
+#--------------------------------------------------------#
## Four types can be passed : "character", "numeric" (aka "double"), "integer", "logical"
# create a 'chunker' object passing the path of the input file.
<- chunker(tmp_path, chunksize = 120,
my_chunker_object4 columns_classes = c("numeric", "numeric", "numeric","numeric", "character"))
# read a chunk
next_chunk(my_chunker_object4)
# get the chunk
get_table(my_chunker_object4)
# read another chunk
next_chunk(my_chunker_object4)
# get the number of lines already read
get_completed(my_chunker_object4)
+#-------------------------#
+#--- Reading a matrix ---#
+#-------------------------#
<- chunker(tmp_path, chunksize = 30, data_format= "matrix")
my_chunker_object5
# read a chunk
next_chunk(my_chunker_object5)
# store the chunk as a character matrix in R
<- get_table(my_chunker_object5)
this_data
# The package provides a fast generic C++ function for conversion from
# matrix (any R type) to data frame
<- matrix2df(this_data)
this_data_as_df2
# remove temporal file
file.remove(tmp_path)
+#----------------------------------#
+#--- Example with a big table -----#
+#----------------------------------#
-### Example with a data frame
# create a large data frame, and write it in a temporal directory
<- file.path(tempdir(),"big_table.txt")
tmp_path
<- data.frame(numeric_data = runif(1000000),
out character_data = sample(c("a", "t", "c", "g"), 1000000,
replace = TRUE),
integer_data = sample(1000000),
bool_data = sample(c(TRUE, FALSE), 1000000, replace = TRUE))
write.table(out, tmp_path, quote = FALSE)
# create a chunker object, reading in chunks of 10000 lines
<- chunker(tmp_path, chunksize = 10000)
my_chunker_object6
next_chunk(my_chunker_object6)
<- get_table(my_chunker_object6)
data
# check classes
lapply(data,typeof)
file.remove(tmp_path)
-### Example with a matrix
# create a large matrix, and write it in a temporal directory
<- tempfile()
my_table write.table(matrix(sample(c("a", "t", "c", "g"), 1000000, replace = TRUE),
100000, 1000), my_table, quote = FALSE)
# create a chunker object, reading in chunks of 10000 lines
<- chunker(my_table, chunksize = 10000, data_format= "matrix")
my_chunker_object7
# create a loop to read all the file and do something with it
<- 0
lines while(next_chunk(my_chunker_object7))
{<- get_table(my_chunker_object7)
data
# do something with data, e.g., convert to data frame first
<- matrix2df(data)
data
<- lines + nrow(data)
lines cat("Processed ", lines, "lines\n")
}
# remove the temporal file
file.remove(my_table)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.