The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(instaR)
To use the instagram API, go to https://instagram.com/developer/ and click on manage client and then register a client. Choose a name etc. For website and redirect URL, write in localhost:1410. This will give you client ID and secret. Plug these in as follows:
my_oauth <- instaOAuth(app_id="1f1f8228974248ba804b4c02fb3c082f", app_secret="a8a727a6b21e488988207686c88ec49e")
save(my_oauth, file="my_oauth")
Now it is time to load clarifai:
library(clarifai)
Clarifai ships with instagram handles of politicians. Load the file using:
filepath <- system.file("inst/extdata/congress.csv", package = "clarifai")
pols <- read.csv(filepath)
Next, download data from instagram:
# getUserMedia(pols$instagram[1], token=my_oauth)
res <- list()
for (i in 1:nrow(pols)) {
# Not all politicians have instagram accounts.
if (pols$instagram[i]!="") {
# Not all have public posts
res[[i]] <- tryCatch(getUserMedia(pols$instagram[i], token=my_oauth), error=function(err) NA)
} else {
res[[i]] <- NA
}
}
# rbind
res2 <- do.call(rbind, res) # nrow = 8088 (may change for runs in the future)
Merge it with some pols data
# Get pols data ready
small_pols <- pols[,c("first_name", "last_name", "party", "instagram", "dw_nominate")]
small_pols_2 <- subset(small_pols, instagram!="") # take out no username/NA
# Merge
res2[, c("first_name", "last_name", "party", "instagram", "dw_nominate")] <-
small_pols_2[match(res2$username, small_pols_2$instagram),]
# write.csv(res2, file="res2.csv", row.names=F)
Now, get image labels from clarifai:
labs <- list()
# Not implemented optimally.
# You can push all images at once. And that is the best than 8k requests.
for (i in 1:nrow(res2)) {
labs[[i]] <- tryCatch(tag_image_urls(res2$image_url[i]), error=function(err) NA)
}
labs_df <- do.call(rbind, labs)
Next merge the labels back into the data:
# Merge
labs_df[,names(res2)] <- res2[match(labs_df$img_url, res2$image_url),]
# write.csv(labs_df, file="labs_df.csv", row.names=F)
# This data frame is available in the extdata folder
Let us analyze data. Popular tags:
head(table(labs_df$tags)[order(-table(labs_df$tags))], 40)
## people politics adult men group government business women portrait leader
## 1592 1137 1132 999 910 795 793 773 763 670
## clothing politician education speech election indoors meeting room competition many
## 554 472 456 435 433 426 360 352 347 345
Do Republican instagram accounts have more photos with military tags than Democrats?
table(grepl("military", labs_df$tags), labs_df$party)
## D R
## FALSE 19806 16030
## TRUE 94 90
How about women?
table(grepl("women", labs_df$tags), labs_df$party)
## D R
## FALSE 19458 15853
## TRUE 442 267
table(grepl("men", labs_df$tags), labs_df$party)
See also for men:
## D R
## FALSE 18265 14978
## TRUE 1635 1142
Protest?
table(grepl("protest", labs_df$tags), labs_df$party)
## D R
## FALSE 19734 16024
## TRUE 166 96
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.