The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

clickb: Web Data Analysis by Bayesian Mixture of Markov Models

Designed for web usage data analysis, it implements tools to process web sequences and identify web browsing profiles through sequential classification. Sequences' clusters are identified by using a model-based approach, specifically mixture of discrete time first-order Markov models for categorical web sequences. A Bayesian approach is used to estimate model parameters and identify sequences classification as proposed by Fruehwirth-Schnatter and Pamminger (2010) <doi:10.1214/10-BA606>.

Version: 0.1
Imports: DiscreteWeibull, mclust, MCMCpack, parallel
Suggests: seqHMM
Published: 2023-02-13
DOI: 10.32614/CRAN.package.clickb
Author: Furio Urso [aut, cre], Reza Mohammadi [aut], Antonino Abbruzzo [aut], Maria Francesca Cracolici [aut]
Maintainer: Furio Urso <furio.urso at unipa.it>
License: MIT + file LICENSE
NeedsCompilation: no
CRAN checks: clickb results

Documentation:

Reference manual: clickb.pdf

Downloads:

Package source: clickb_0.1.tar.gz
Windows binaries: r-devel: clickb_0.1.zip, r-release: clickb_0.1.zip, r-oldrel: clickb_0.1.zip
macOS binaries: r-release (arm64): clickb_0.1.tgz, r-oldrel (arm64): clickb_0.1.tgz, r-release (x86_64): clickb_0.1.tgz, r-oldrel (x86_64): clickb_0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=clickb to link to this page.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.