The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Bohai University, China
Email:psydreammer@foxmail.com to Xijian Zheng or 570950454@qq.com to Huiyong Fan
Since the birth of factor analysis (proposed by Spearman), more and more studies used factor analysis as their research method, and then the number of factor loading matrices has been increasing steadily. This phenomenon can be observed in the main disciplines (e.g. psychology, management, education… ) of social science.
Along with the growing of such studies, the debated on the factor structure of a scale (or inner structure of a construct) is becoming popular. For example, there are several models (including a four-factor model, a five-factor model, and a seven-factor model) explaining the inner structure of the Brief Psychiatric Rating Scale (Shafer, 2005). These inconsistent models leaded to a continuing debate from 1970 to 2002 which introduced a big confusion among researchers and scale users.
Shafer (2005, 2006) combined the exploratory factor analysis technique and the co-occurrence matrix generated from the factor loading matrix published widely in primary studies. Although someone once analyzed the co-occurrence matrix (Loeber & Schmaling, 1985), it is Shafer, to our knowledge, who firstly introduced the Exploratory Factor Analysis based on Co-Occurrence- matrix (can be shorted as COEFA) to synthesize the divergent factor loading matrices.
Up to September, 2022, there is no any open source tool to deal with the complex matrix computation of COEFA. And because of this, it is very difficult for general researchers to adopt the COEFA method in their meta-analysis. About two years ago, our team (Xijian Zheng and Huiyong Fan from Bohai University, China) planned to develop a R package to realize all computation procedures of the COEFA method. And the following sections will introduce the key steps of COEFA method. To remember them easily, this R package was named as coefa.
F1 | F2 | F3 | |
---|---|---|---|
Item1 | 0.7 | 0.3 | 0.1 |
Item2 | 0.5 | 0.2 | 0.1 |
Item3 | 0.2 | 0.8 | 0.3 |
Item4 | 0.3 | 0.5 | 0.3 |
Item5 | 0.2 | 0.2 | 0.7 |
Item6 | 0.1 | 0.3 | 0.9 |
F1 | F2 | |
---|---|---|
Item1 | 0.7 | 0.3 |
Item2 | 0.5 | 0.2 |
Item3 | 0.2 | 0.8 |
Item4 | 0.3 | 0.5 |
Item5 | 0.2 | 0.7 |
Item6 | 0.1 | 0.8 |
Cutoff= 0.4
Trimmed factor loading matrix for original study 1
F1 | F2 | F3 | |
---|---|---|---|
Item1 | 1 | 0 | 0 |
Item2 | 1 | 0 | 0 |
Item3 | 0 | 1 | 0 |
Item4 | 0 | 1 | 0 |
Item5 | 0 | 0 | 1 |
Item6 | 0 | 0 | 1 |
F1 | F2 | |
---|---|---|
Item1 | 1 | 0 |
Item2 | 1 | 0 |
Item3 | 0 | 1 |
Item4 | 0 | 1 |
Item5 | 0 | 1 |
Item6 | 0 | 1 |
Item1 | Item2 | Item3 | Item4 | Item5 | Item6 | |
---|---|---|---|---|---|---|
Item1 | 1 | 1 | 0 | 0 | 0 | 0 |
Item2 | 1 | 1 | 0 | 0 | 0 | 0 |
Item3 | 0 | 0 | 1 | 1 | 0 | 0 |
Item4 | 0 | 0 | 1 | 1 | 0 | 0 |
Item5 | 0 | 0 | 0 | 0 | 1 | 1 |
Item6 | 0 | 0 | 0 | 0 | 1 | 1 |
Item1 | Item2 | Item3 | Item4 | Item5 | Item6 | |
---|---|---|---|---|---|---|
Item1 | 1 | 1 | 0 | 0 | 0 | 0 |
Item2 | 1 | 1 | 0 | 0 | 0 | 0 |
Item3 | 0 | 0 | 1 | 1 | 0 | 0 |
Item4 | 0 | 0 | 1 | 1 | 0 | 0 |
Item5 | 0 | 0 | 0 | 0 | 1 | 1 |
Item6 | 0 | 0 | 0 | 0 | 1 | 1 |
If the sample size weighed problem is not considered:
S: Aggregated co-occurrence matrices(Unweight)
Mc: Sum of multiple co-occurrence matrices
K: The numbers of include study
If the sample size weighted is considered:
S: Aggregated co-occurrence matrices(weight)
Mc: Sum of multiple co-occurrence matrices
:The total sample size
:The sample size of the i-th study
It should be noted here that the methods of extraction and rotation in COEFA is different from general factor analysis in some degree. First, the extraction method should use unweighted least squares (ULS) when the aggregated co-occurrence matrix is Not Positive Definite (Cao & Zhang, 2017). Second, the rotation method should be “Varimax”, because the co-occurrence matrix is not correlation matrix or covariance matrix (Shafer, 2005).
There is also an optional step to fix the the value of diagonal in
matrix. When Shafer’s (2005; 2006) method is applied, the value of
diagonal value may not equal to 1.It is difficult to done KMO and
Bartlett test, and may also cause some bias. We will provide an
alternative – Replace the diagonal value of the matrix with 1 by
coefa_fixdia
. More research is needed in the future to find
others reasonable alternatives.
The coefa package needs the version of R 3.1.4 (R Core Team, 2022), and several packages including openxlsx (Schauberger, Walker, 2021), psych (Revelle, 2022).
A example can be used to demonstrate that how to use the functions in the coefa package when implementing a meta-analysis of factor analysis based on co-occurrence matrices.The data is from 8 exploratory factor analysis researches of Spence Children Anxiety Scale,which was stored in the coefa package. The data can be loaded by calling library(“coefa”) in R.
We need to load the coefa package before calling the functions in the package.
#load the library
library(coefa)
#> Loading required package: openxlsx
#> Loading required package: psych
data("spence8")
#Supposing that the data is import by coefa_read
<-spence8
matrices.withoutNa#Only the first two factor loading matrices of spence8 are shown here
c(1,2)]
matrices.withoutNa[#> $`Agboeze,2021.xlsx`
#> F1 F2 F3 F4 F5 F6 X7
#> 1 0.725 0.000 0.000 0.000 0.000 0.000 0.0000
#> 2 0.000 0.000 0.000 0.000 0.000 0.000 0.6810
#> 3 0.782 0.000 0.000 0.000 0.000 0.000 0.0000
#> 4 0.836 0.000 0.000 0.000 0.000 0.000 0.0000
#> 5 0.853 0.000 0.000 0.000 0.000 0.000 0.0000
#> 6 0.000 0.649 0.000 0.000 0.000 0.000 0.0000
#> 7 0.834 0.000 0.000 0.000 0.000 0.000 0.0000
#> 8 0.837 0.000 0.000 0.000 0.000 0.000 0.0000
#> 9 0.826 0.000 0.000 0.000 0.000 0.000 0.0000
#> 10 0.000 0.000 0.000 0.823 0.000 0.000 0.0000
#> 11 0.000 0.000 0.000 0.664 0.000 0.000 0.0000
#> 12 0.000 0.000 0.000 0.829 0.000 0.000 0.0000
#> 13 0.000 0.000 0.000 0.000 0.475 0.000 0.0000
#> 14 0.000 0.000 0.607 0.000 0.000 0.000 0.0000
#> 15 0.000 0.000 0.000 0.776 0.000 0.000 0.0000
#> 16 0.000 0.000 0.000 0.000 0.000 0.000 0.4370
#> 17 0.000 0.000 0.000 0.000 0.000 0.588 0.0000
#> 18 0.000 0.000 0.000 0.000 0.000 0.000 0.7700
#> 19 0.000 0.000 0.000 0.000 0.000 0.491 0.0000
#> 20 0.000 0.402 0.000 0.000 0.000 0.000 0.0000
#> 21 0.000 0.000 0.000 0.000 0.000 0.724 0.0000
#> 22 0.000 0.697 0.000 0.000 0.000 0.000 0.0000
#> 23 0.000 0.000 0.000 0.000 0.000 0.773 0.0000
#> 24 0.000 0.640 0.000 0.000 0.000 0.000 0.0000
#> 25 0.000 0.000 0.000 0.000 0.000 0.730 0.0000
#> 26 0.000 0.000 0.618 0.000 0.000 0.000 0.0000
#> 27 0.000 0.495 0.000 0.000 0.000 0.000 0.0000
#> 28 0.593 0.000 0.000 0.000 0.000 0.000 0.0000
#> 29 0.000 0.000 0.613 0.000 0.000 0.000 0.0000
#> 30 0.000 0.719 0.000 0.000 0.000 0.000 0.0000
#> 31 0.501 0.000 0.000 0.000 0.000 0.000 0.0000
#> 32 0.000 0.000 0.453 0.000 0.000 0.000 0.0000
#> 33 0.000 0.000 0.000 0.000 0.000 0.000 0.5011
#> 34 0.000 0.000 0.000 0.000 0.000 0.000 0.5440
#> 35 0.000 0.000 0.000 0.000 0.000 0.856 0.0000
#> 36 0.000 0.000 0.488 0.000 0.000 0.000 0.0000
#> 37 0.000 0.000 0.000 0.000 0.000 0.000 0.8340
#> 38 0.000 0.000 0.537 0.000 0.000 0.000 0.0000
#>
#> $`Ahlen,2017.xlsx`
#> F1 F2 F3 F4 F5 F6
#> 1 0.00 0.38 0.00 0.00 0.00 0.00
#> 2 0.00 0.00 0.00 0.31 0.00 0.00
#> 3 0.00 0.00 0.00 0.00 0.00 0.00
#> 4 0.00 0.00 0.00 0.00 0.00 0.00
#> 5 0.00 0.00 0.00 0.00 0.00 0.00
#> 6 0.00 0.00 0.48 0.00 0.00 0.00
#> 7 0.00 0.00 0.00 0.00 0.00 0.00
#> 8 0.00 0.00 0.00 0.00 0.00 0.00
#> 9 0.00 0.00 0.39 0.00 0.00 0.00
#> 10 0.00 0.00 0.00 0.46 0.00 0.00
#> 11 0.00 0.00 0.00 0.00 0.00 0.00
#> 12 0.37 0.00 0.00 0.00 0.00 0.00
#> 13 0.00 0.00 0.00 0.00 0.32 0.00
#> 14 0.00 0.00 0.00 0.00 0.00 0.00
#> 15 0.00 0.00 0.00 0.00 0.00 0.36
#> 16 0.00 0.00 0.00 0.43 0.00 0.00
#> 17 0.00 0.00 0.00 0.00 0.00 0.00
#> 18 0.00 0.00 0.00 0.00 0.00 0.00
#> 19 0.57 0.00 0.00 0.00 0.00 0.00
#> 20 0.00 0.00 0.00 0.00 0.00 0.34
#> 21 0.00 0.00 0.00 0.49 0.00 0.00
#> 22 0.00 0.00 0.00 0.00 0.00 0.00
#> 23 0.00 0.00 0.00 0.00 0.36 0.00
#> 24 0.00 0.00 0.00 0.00 0.00 0.00
#> 25 0.00 0.00 0.00 0.00 0.00 0.32
#> 26 0.00 0.00 0.00 0.52 0.00 0.00
#> 27 0.00 0.00 0.00 0.00 0.00 0.00
#> 28 0.40 0.00 0.00 0.00 0.00 0.00
#> 29 0.00 0.00 0.00 0.00 0.00 0.00
#> 30 0.00 0.43 0.00 0.00 0.00 0.00
#> 31 0.00 0.00 0.00 0.00 0.31 0.00
#> 32 0.00 0.00 0.00 0.00 0.00 0.00
#> 33 0.00 0.39 0.00 0.00 0.00 0.00
#> 34 0.00 0.43 0.00 0.00 0.00 0.00
#> 35 0.00 0.00 0.00 0.00 0.56 0.00
#> 36 0.00 0.00 0.00 0.00 0.32 0.00
#> 37 0.00 0.00 0.00 0.00 0.00 0.33
#> 38 0.00 0.00 0.00 0.00 0.00 0.00
There are a number of ways we can get the factor loading matrix from
the original study, but the coefa package provides the powerful
coefa_read
function to help you read data into R from a
folder.Meanwhile the missing values in original studies will be
deleted.
#import data into R from a folder
<-coefa_read(type = "xlsx") matrices.withoutNa
#Use the Shafer method to assign a value to the matrix of de-null values to generate a factor loading matrix after assignment
<-coefa_tflm2(matrices.withoutNa,methodE = "ls",cutoff = 0.3) matrices.tflm
#Only the first two factor loading matrices of spence8 are shown here
c(1,2)]
matrices.tflm[#> $`Agboeze,2021.xlsx`
#> F1 F2 F3 F4 F5 F6 X7
#> 1 1 0 0 0 0 0 0
#> 2 0 0 0 0 0 0 1
#> 3 1 0 0 0 0 0 0
#> 4 1 0 0 0 0 0 0
#> 5 1 0 0 0 0 0 0
#> 6 0 1 0 0 0 0 0
#> 7 1 0 0 0 0 0 0
#> 8 1 0 0 0 0 0 0
#> 9 1 0 0 0 0 0 0
#> 10 0 0 0 1 0 0 0
#> 11 0 0 0 1 0 0 0
#> 12 0 0 0 1 0 0 0
#> 13 0 0 0 0 1 0 0
#> 14 0 0 1 0 0 0 0
#> 15 0 0 0 1 0 0 0
#> 16 0 0 0 0 0 0 1
#> 17 0 0 0 0 0 1 0
#> 18 0 0 0 0 0 0 1
#> 19 0 0 0 0 0 1 0
#> 20 0 1 0 0 0 0 0
#> 21 0 0 0 0 0 1 0
#> 22 0 1 0 0 0 0 0
#> 23 0 0 0 0 0 1 0
#> 24 0 1 0 0 0 0 0
#> 25 0 0 0 0 0 1 0
#> 26 0 0 1 0 0 0 0
#> 27 0 1 0 0 0 0 0
#> 28 1 0 0 0 0 0 0
#> 29 0 0 1 0 0 0 0
#> 30 0 1 0 0 0 0 0
#> 31 1 0 0 0 0 0 0
#> 32 0 0 1 0 0 0 0
#> 33 0 0 0 0 0 0 1
#> 34 0 0 0 0 0 0 1
#> 35 0 0 0 0 0 1 0
#> 36 0 0 1 0 0 0 0
#> 37 0 0 0 0 0 0 1
#> 38 0 0 1 0 0 0 0
#>
#> $`Ahlen,2017.xlsx`
#> F1 F2 F3 F4 F5 F6
#> 1 0 1 0 0 0 0
#> 2 0 0 0 1 0 0
#> 3 0 0 0 0 0 0
#> 4 0 0 0 0 0 0
#> 5 0 0 0 0 0 0
#> 6 0 0 1 0 0 0
#> 7 0 0 0 0 0 0
#> 8 0 0 0 0 0 0
#> 9 0 0 1 0 0 0
#> 10 0 0 0 1 0 0
#> 11 0 0 0 0 0 0
#> 12 1 0 0 0 0 0
#> 13 0 0 0 0 1 0
#> 14 0 0 0 0 0 0
#> 15 0 0 0 0 0 1
#> 16 0 0 0 1 0 0
#> 17 0 0 0 0 0 0
#> 18 0 0 0 0 0 0
#> 19 1 0 0 0 0 0
#> 20 0 0 0 0 0 1
#> 21 0 0 0 1 0 0
#> 22 0 0 0 0 0 0
#> 23 0 0 0 0 1 0
#> 24 0 0 0 0 0 0
#> 25 0 0 0 0 0 1
#> 26 0 0 0 1 0 0
#> 27 0 0 0 0 0 0
#> 28 1 0 0 0 0 0
#> 29 0 0 0 0 0 0
#> 30 0 1 0 0 0 0
#> 31 0 0 0 0 1 0
#> 32 0 0 0 0 0 0
#> 33 0 1 0 0 0 0
#> 34 0 1 0 0 0 0
#> 35 0 0 0 0 1 0
#> 36 0 0 0 0 1 0
#> 37 0 0 0 0 0 1
#> 38 0 0 0 0 0 0
#Generate co-occurrence matrices
<-coefa_gcm(matrices.tflm)
matrices.gcm#Only the first two factor loading matrices of spence8 are shown here
c(1,2)]
matrices.gcm[#> $`Agboeze,2021.xlsx`
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#> 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 3 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 4 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 5 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 7 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 8 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 9 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 10 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 11 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 15 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 16 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 18 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 20 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 22 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 24 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 26 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 27 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 28 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 30 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
#> 31 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
#> 32 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 33 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0
#> 36 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 37 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
#> 38 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
#> 29 30 31 32 33 34 35 36 37 38
#> 1 0 0 1 0 0 0 0 0 0 0
#> 2 0 0 0 0 1 1 0 0 1 0
#> 3 0 0 1 0 0 0 0 0 0 0
#> 4 0 0 1 0 0 0 0 0 0 0
#> 5 0 0 1 0 0 0 0 0 0 0
#> 6 0 1 0 0 0 0 0 0 0 0
#> 7 0 0 1 0 0 0 0 0 0 0
#> 8 0 0 1 0 0 0 0 0 0 0
#> 9 0 0 1 0 0 0 0 0 0 0
#> 10 0 0 0 0 0 0 0 0 0 0
#> 11 0 0 0 0 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 0
#> 13 0 0 0 0 0 0 0 0 0 0
#> 14 1 0 0 1 0 0 0 1 0 1
#> 15 0 0 0 0 0 0 0 0 0 0
#> 16 0 0 0 0 1 1 0 0 1 0
#> 17 0 0 0 0 0 0 1 0 0 0
#> 18 0 0 0 0 1 1 0 0 1 0
#> 19 0 0 0 0 0 0 1 0 0 0
#> 20 0 1 0 0 0 0 0 0 0 0
#> 21 0 0 0 0 0 0 1 0 0 0
#> 22 0 1 0 0 0 0 0 0 0 0
#> 23 0 0 0 0 0 0 1 0 0 0
#> 24 0 1 0 0 0 0 0 0 0 0
#> 25 0 0 0 0 0 0 1 0 0 0
#> 26 1 0 0 1 0 0 0 1 0 1
#> 27 0 1 0 0 0 0 0 0 0 0
#> 28 0 0 1 0 0 0 0 0 0 0
#> 29 1 0 0 1 0 0 0 1 0 1
#> 30 0 1 0 0 0 0 0 0 0 0
#> 31 0 0 1 0 0 0 0 0 0 0
#> 32 1 0 0 1 0 0 0 1 0 1
#> 33 0 0 0 0 1 1 0 0 1 0
#> 34 0 0 0 0 1 1 0 0 1 0
#> 35 0 0 0 0 0 0 1 0 0 0
#> 36 1 0 0 1 0 0 0 1 0 1
#> 37 0 0 0 0 1 1 0 0 1 0
#> 38 1 0 0 1 0 0 0 1 0 1
#>
#> $`Ahlen,2017.xlsx`
#> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#> 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
#> 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 6 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 10 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
#> 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
#> 13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
#> 16 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
#> 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 19 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
#> 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
#> 21 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
#> 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 23 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
#> 26 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
#> 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 28 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
#> 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 31 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 33 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 35 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 36 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
#> 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
#> 29 30 31 32 33 34 35 36 37 38
#> 1 0 1 0 0 1 1 0 0 0 0
#> 2 0 0 0 0 0 0 0 0 0 0
#> 3 0 0 0 0 0 0 0 0 0 0
#> 4 0 0 0 0 0 0 0 0 0 0
#> 5 0 0 0 0 0 0 0 0 0 0
#> 6 0 0 0 0 0 0 0 0 0 0
#> 7 0 0 0 0 0 0 0 0 0 0
#> 8 0 0 0 0 0 0 0 0 0 0
#> 9 0 0 0 0 0 0 0 0 0 0
#> 10 0 0 0 0 0 0 0 0 0 0
#> 11 0 0 0 0 0 0 0 0 0 0
#> 12 0 0 0 0 0 0 0 0 0 0
#> 13 0 0 1 0 0 0 1 1 0 0
#> 14 0 0 0 0 0 0 0 0 0 0
#> 15 0 0 0 0 0 0 0 0 1 0
#> 16 0 0 0 0 0 0 0 0 0 0
#> 17 0 0 0 0 0 0 0 0 0 0
#> 18 0 0 0 0 0 0 0 0 0 0
#> 19 0 0 0 0 0 0 0 0 0 0
#> 20 0 0 0 0 0 0 0 0 1 0
#> 21 0 0 0 0 0 0 0 0 0 0
#> 22 0 0 0 0 0 0 0 0 0 0
#> 23 0 0 1 0 0 0 1 1 0 0
#> 24 0 0 0 0 0 0 0 0 0 0
#> 25 0 0 0 0 0 0 0 0 1 0
#> 26 0 0 0 0 0 0 0 0 0 0
#> 27 0 0 0 0 0 0 0 0 0 0
#> 28 0 0 0 0 0 0 0 0 0 0
#> 29 0 0 0 0 0 0 0 0 0 0
#> 30 0 1 0 0 1 1 0 0 0 0
#> 31 0 0 1 0 0 0 1 1 0 0
#> 32 0 0 0 0 0 0 0 0 0 0
#> 33 0 1 0 0 1 1 0 0 0 0
#> 34 0 1 0 0 1 1 0 0 0 0
#> 35 0 0 1 0 0 0 1 1 0 0
#> 36 0 0 1 0 0 0 1 1 0 0
#> 37 0 0 0 0 0 0 0 0 1 0
#> 38 0 0 0 0 0 0 0 0 0 0
The users have two options,weight by sample size or not.
#Import the size of sample,sz means the sample sizes from the first study to the last study is 252,750,461,285,224,425,1520,591.
<-c(252,750,461,285,224,425,1520,591)
sz#Aggregate multiple co-occurrence matrices
<-coefa_acm(matrices.gcm,sz,samplesized = TRUE)
matrices.acm
matrices.acm#> 1 2 3 4 5 6 7
#> 1 1.00000000 0.33717835 0.49534161 0.55856256 0.05590062 0.27506655 0.18700089
#> 2 0.33717835 1.67435670 0.33717835 0.96295475 0.67546584 0.00000000 0.13110027
#> 3 0.49534161 0.33717835 0.49534161 0.49534161 0.05590062 0.00000000 0.05590062
#> 4 0.55856256 0.96295475 0.49534161 1.18433895 0.68167702 0.00000000 0.18700089
#> 5 0.05590062 0.67546584 0.05590062 0.68167702 0.83362910 0.00000000 0.18700089
#> 6 0.27506655 0.00000000 0.00000000 0.00000000 0.00000000 0.93677906 0.57054126
#> 7 0.18700089 0.13110027 0.05590062 0.18700089 0.18700089 0.57054126 0.96472937
#> 8 0.05590062 0.49467613 0.05590062 0.55057675 0.65283940 0.00000000 0.05590062
#> 9 0.66814552 0.33717835 0.39307897 0.39307897 0.05590062 0.88087844 0.62644188
#> 10 0.61224490 0.50354925 0.33717835 0.33717835 0.00000000 0.71450754 0.57054126
#> 11 0.43145519 0.38686779 0.33717835 0.33717835 0.15195209 0.09427684 0.00000000
#> 12 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 13 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 14 0.00000000 0.67546584 0.00000000 0.62577640 0.77772848 0.00000000 0.13110027
#> 15 0.22537711 0.00000000 0.00000000 0.00000000 0.10226264 0.56255546 0.46827862
#> 16 0.00000000 0.84250222 0.00000000 0.13110027 0.18078971 0.00000000 0.13110027
#> 17 0.53149956 0.33717835 0.33717835 0.40039929 0.10226264 0.13110027 0.13110027
#> 18 0.43944099 0.39307897 0.43944099 0.43944099 0.00000000 0.00000000 0.00000000
#> 19 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.06322094
#> 20 0.59693878 0.46827862 0.43944099 0.63376220 0.13110027 0.15017746 0.13110027
#> 21 0.00000000 0.73691216 0.00000000 0.13110027 0.13110027 0.00000000 0.33828749
#> 22 0.43944099 0.33717835 0.43944099 0.43944099 0.00000000 0.05590062 0.06322094
#> 23 0.00000000 0.57054126 0.00000000 0.13110027 0.13110027 0.00000000 0.18078971
#> 24 0.00000000 0.33717835 0.00000000 0.00000000 0.10226264 0.05590062 0.04968944
#> 25 0.00000000 0.46827862 0.00000000 0.13110027 0.13110027 0.00000000 0.33828749
#> 26 0.61224490 0.50354925 0.33717835 0.33717835 0.00000000 0.71450754 0.57054126
#> 27 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.39307897 0.54436557
#> 28 0.11912156 0.00000000 0.05590062 0.11912156 0.05590062 0.00000000 0.11912156
#> 29 0.00000000 0.57054126 0.00000000 0.13110027 0.13110027 0.00000000 0.18078971
#> 30 0.16637090 0.00000000 0.00000000 0.00000000 0.00000000 0.05590062 0.00000000
#> 31 0.33096717 0.10226264 0.05590062 0.05590062 0.05590062 0.71450754 0.62644188
#> 32 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 33 0.22959184 0.39307897 0.00000000 0.40039929 0.33717835 0.00000000 0.00000000
#> 34 0.16637090 0.86135759 0.00000000 0.46827862 0.46827862 0.00000000 0.24401065
#> 35 0.00000000 0.33717835 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#> 36 0.40039929 0.33717835 0.33717835 0.40039929 0.00000000 0.00000000 0.00000000
#> 37 0.00000000 0.05590062 0.00000000 0.00000000 0.00000000 0.00000000 0.06322094
#> 38 0.00000000 0.53149956 0.00000000 0.53149956 0.63376220 0.00000000 0.13110027
#> 8 9 10 11 12 13 14
#> 1 0.05590062 0.66814552 0.61224490 0.43145519 0.00000000 0.00000000 0.00000000
#> 2 0.49467613 0.33717835 0.50354925 0.38686779 0.00000000 0.00000000 0.67546584
#> 3 0.05590062 0.39307897 0.33717835 0.33717835 0.00000000 0.00000000 0.00000000
#> 4 0.55057675 0.39307897 0.33717835 0.33717835 0.00000000 0.00000000 0.62577640
#> 5 0.65283940 0.05590062 0.00000000 0.15195209 0.00000000 0.00000000 0.77772848
#> 6 0.00000000 0.88087844 0.71450754 0.09427684 0.00000000 0.00000000 0.00000000
#> 7 0.05590062 0.62644188 0.57054126 0.00000000 0.00000000 0.00000000 0.13110027
#> 8 0.78393966 0.05590062 0.00000000 0.23336291 0.00000000 0.13110027 0.59693878
#> 9 0.05590062 1.27395741 1.05168589 0.43145519 0.00000000 0.00000000 0.00000000
#> 10 0.00000000 1.05168589 1.27395741 0.48735581 0.05590062 0.00000000 0.00000000
#> 11 0.23336291 0.43145519 0.48735581 0.77040816 0.05590062 0.13110027 0.15195209
#> 12 0.00000000 0.00000000 0.05590062 0.05590062 0.93677906 0.00000000 0.00000000
#> 13 0.13110027 0.00000000 0.00000000 0.13110027 0.00000000 0.95031056 0.00000000
#> 14 0.59693878 0.00000000 0.00000000 0.15195209 0.00000000 0.00000000 0.83362910
#> 15 0.10226264 0.56255546 0.61845608 0.25244011 0.52417924 0.00000000 0.10226264
#> 16 0.00000000 0.00000000 0.16637090 0.04968944 0.00000000 0.00000000 0.18078971
#> 17 0.10226264 0.46827862 0.46827862 0.43944099 0.00000000 0.10226264 0.10226264
#> 18 0.13110027 0.33717835 0.33717835 0.46827862 0.14396628 0.13110027 0.00000000
#> 19 0.00000000 0.00000000 0.00000000 0.00000000 0.88087844 0.00000000 0.00000000
#> 20 0.13110027 0.43145519 0.43145519 0.56255546 0.46827862 0.13110027 0.13110027
#> 21 0.00000000 0.00000000 0.16637090 0.00000000 0.00000000 0.00000000 0.13110027
#> 22 0.13110027 0.33717835 0.33717835 0.46827862 0.27506655 0.13110027 0.00000000
#> 23 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.16637090 0.13110027
#> 24 0.23336291 0.00000000 0.00000000 0.23336291 0.13110027 0.72803904 0.10226264
#> 25 0.00000000 0.00000000 0.00000000 0.00000000 0.43944099 0.06322094 0.13110027
#> 26 0.00000000 1.05168589 1.21805679 0.43145519 0.13110027 0.00000000 0.05590062
#> 27 0.00000000 0.33717835 0.33717835 0.00000000 0.57054126 0.00000000 0.00000000
#> 28 0.18700089 0.05590062 0.00000000 0.13110027 0.83118900 0.13110027 0.00000000
#> 29 0.13110027 0.00000000 0.00000000 0.13110027 0.00000000 0.13110027 0.18700089
#> 30 0.00000000 0.00000000 0.00000000 0.00000000 0.71450754 0.00000000 0.00000000
#> 31 0.05590062 0.77040816 0.71450754 0.09427684 0.00000000 0.22959184 0.00000000
#> 32 0.00000000 0.00000000 0.00000000 0.00000000 0.71450754 0.00000000 0.05590062
#> 33 0.33717835 0.00000000 0.00000000 0.00000000 0.66481810 0.00000000 0.33717835
#> 34 0.46827862 0.00000000 0.00000000 0.13110027 0.10226264 0.13110027 0.46827862
#> 35 0.13110027 0.00000000 0.00000000 0.13110027 0.00000000 0.89440994 0.00000000
#> 36 0.00000000 0.33717835 0.33717835 0.33717835 0.13110027 0.33185448 0.05590062
#> 37 0.13110027 0.00000000 0.00000000 0.13110027 0.00000000 0.72803904 0.00000000
#> 38 0.63376220 0.00000000 0.00000000 0.23336291 0.00000000 0.13110027 0.68966282
#> 15 16 17 18 19 20 21
#> 1 0.2253771 0.00000000 0.53149956 0.43944099 0.00000000 0.59693878 0.00000000
#> 2 0.0000000 0.84250222 0.33717835 0.39307897 0.00000000 0.46827862 0.73691216
#> 3 0.0000000 0.00000000 0.33717835 0.43944099 0.00000000 0.43944099 0.00000000
#> 4 0.0000000 0.13110027 0.40039929 0.43944099 0.00000000 0.63376220 0.13110027
#> 5 0.1022626 0.18078971 0.10226264 0.00000000 0.00000000 0.13110027 0.13110027
#> 6 0.5625555 0.00000000 0.13110027 0.00000000 0.00000000 0.15017746 0.00000000
#> 7 0.4682786 0.13110027 0.13110027 0.00000000 0.06322094 0.13110027 0.33828749
#> 8 0.1022626 0.00000000 0.10226264 0.13110027 0.00000000 0.13110027 0.00000000
#> 9 0.5625555 0.00000000 0.46827862 0.33717835 0.00000000 0.43145519 0.00000000
#> 10 0.6184561 0.16637090 0.46827862 0.33717835 0.00000000 0.43145519 0.16637090
#> 11 0.2524401 0.04968944 0.43944099 0.46827862 0.00000000 0.56255546 0.00000000
#> 12 0.5241792 0.00000000 0.00000000 0.14396628 0.88087844 0.46827862 0.00000000
#> 13 0.0000000 0.00000000 0.10226264 0.13110027 0.00000000 0.13110027 0.00000000
#> 14 0.1022626 0.18078971 0.10226264 0.00000000 0.00000000 0.13110027 0.13110027
#> 15 1.3553682 0.00000000 0.23336291 0.00000000 0.46827862 0.72892635 0.00000000
#> 16 0.0000000 0.84250222 0.00000000 0.05590062 0.00000000 0.13110027 0.73691216
#> 17 0.2333629 0.00000000 0.79192547 0.33717835 0.05590062 0.40039929 0.05590062
#> 18 0.0000000 0.05590062 0.33717835 0.77040816 0.14396628 0.57054126 0.00000000
#> 19 0.4682786 0.00000000 0.05590062 0.14396628 1.00000000 0.46827862 0.11912156
#> 20 0.7289264 0.13110027 0.40039929 0.57054126 0.46827862 1.54968944 0.13110027
#> 21 0.0000000 0.73691216 0.05590062 0.00000000 0.11912156 0.13110027 1.00000000
#> 22 0.1311003 0.00000000 0.33717835 0.71450754 0.33828749 0.75754215 0.06322094
#> 23 0.0000000 0.57054126 0.05590062 0.00000000 0.05590062 0.13110027 0.67613132
#> 24 0.2333629 0.33717835 0.20452529 0.13110027 0.13110027 0.31810115 0.38686779
#> 25 0.5035492 0.46827862 0.05590062 0.00000000 0.55856256 0.63464951 0.73136646
#> 26 0.6936557 0.16637090 0.46827862 0.33717835 0.13110027 0.56255546 0.16637090
#> 27 0.8054570 0.00000000 0.00000000 0.00000000 0.63376220 0.52417924 0.20718722
#> 28 0.4682786 0.00000000 0.06322094 0.22537711 0.89440994 0.66259982 0.06322094
#> 29 0.0000000 0.57054126 0.00000000 0.13110027 0.00000000 0.26220053 0.62023070
#> 30 0.4682786 0.00000000 0.00000000 0.14396628 0.71450754 0.52417924 0.00000000
#> 31 0.5625555 0.10226264 0.13110027 0.00000000 0.00000000 0.09427684 0.10226264
#> 32 0.4682786 0.00000000 0.00000000 0.14396628 0.71450754 0.46827862 0.00000000
#> 33 0.4682786 0.05590062 0.06322094 0.15017746 0.66481810 0.53149956 0.00000000
#> 34 0.0000000 0.52417924 0.00000000 0.18700089 0.16548358 0.26220053 0.58118900
#> 35 0.0000000 0.33717835 0.15816327 0.13110027 0.05590062 0.13110027 0.39307897
#> 36 0.1311003 0.00000000 0.50266193 0.33717835 0.13110027 0.53149956 0.00000000
#> 37 0.1663709 0.05590062 0.10226264 0.18700089 0.06322094 0.29747116 0.06322094
#> 38 0.1022626 0.13110027 0.10226264 0.13110027 0.00000000 0.26220053 0.13110027
#> 22 23 24 25 26 27 28
#> 1 0.43944099 0.00000000 0.00000000 0.00000000 0.61224490 0.00000000 0.11912156
#> 2 0.33717835 0.57054126 0.33717835 0.46827862 0.50354925 0.00000000 0.00000000
#> 3 0.43944099 0.00000000 0.00000000 0.00000000 0.33717835 0.00000000 0.05590062
#> 4 0.43944099 0.13110027 0.00000000 0.13110027 0.33717835 0.00000000 0.11912156
#> 5 0.00000000 0.13110027 0.10226264 0.13110027 0.00000000 0.00000000 0.05590062
#> 6 0.05590062 0.00000000 0.05590062 0.00000000 0.71450754 0.39307897 0.00000000
#> 7 0.06322094 0.18078971 0.04968944 0.33828749 0.57054126 0.54436557 0.11912156
#> 8 0.13110027 0.00000000 0.23336291 0.00000000 0.00000000 0.00000000 0.18700089
#> 9 0.33717835 0.00000000 0.00000000 0.00000000 1.05168589 0.33717835 0.05590062
#> 10 0.33717835 0.00000000 0.00000000 0.00000000 1.21805679 0.33717835 0.00000000
#> 11 0.46827862 0.00000000 0.23336291 0.00000000 0.43145519 0.00000000 0.13110027
#> 12 0.27506655 0.00000000 0.13110027 0.43944099 0.13110027 0.57054126 0.83118900
#> 13 0.13110027 0.16637090 0.72803904 0.06322094 0.00000000 0.00000000 0.13110027
#> 14 0.00000000 0.13110027 0.10226264 0.13110027 0.05590062 0.00000000 0.00000000
#> 15 0.13110027 0.00000000 0.23336291 0.50354925 0.69365572 0.80545697 0.46827862
#> 16 0.00000000 0.57054126 0.33717835 0.46827862 0.16637090 0.00000000 0.00000000
#> 17 0.33717835 0.05590062 0.20452529 0.05590062 0.46827862 0.00000000 0.06322094
#> 18 0.71450754 0.00000000 0.13110027 0.00000000 0.33717835 0.00000000 0.22537711
#> 19 0.33828749 0.05590062 0.13110027 0.55856256 0.13110027 0.63376220 0.89440994
#> 20 0.75754215 0.13110027 0.31810115 0.63464951 0.56255546 0.52417924 0.66259982
#> 21 0.06322094 0.67613132 0.38686779 0.73136646 0.16637090 0.20718722 0.06322094
#> 22 0.96472937 0.00000000 0.31810115 0.06322094 0.46827862 0.25022183 0.41969831
#> 23 0.00000000 0.84250222 0.38686779 0.57386868 0.00000000 0.04968944 0.00000000
#> 24 0.31810115 0.38686779 1.40417036 0.45008873 0.13110027 0.23669033 0.26220053
#> 25 0.06322094 0.57386868 0.45008873 1.40039929 0.00000000 0.64662822 0.50266193
#> 26 0.46827862 0.00000000 0.13110027 0.00000000 1.46827862 0.46827862 0.13110027
#> 27 0.25022183 0.04968944 0.23669033 0.64662822 0.46827862 1.17080745 0.63376220
#> 28 0.41969831 0.00000000 0.26220053 0.50266193 0.13110027 0.63376220 1.14463177
#> 29 0.13110027 0.62023070 0.51796806 0.51796806 0.05590062 0.04968944 0.13110027
#> 30 0.33096717 0.00000000 0.18700089 0.43944099 0.13110027 0.62644188 0.66481810
#> 31 0.00000000 0.26863354 0.06322094 0.06322094 0.71450754 0.33717835 0.05590062
#> 32 0.27506655 0.00000000 0.13110027 0.43944099 0.18700089 0.57054126 0.66481810
#> 33 0.22537711 0.00000000 0.13110027 0.43944099 0.13110027 0.57054126 0.72803904
#> 34 0.19432121 0.51796806 0.51796806 0.68345164 0.00000000 0.21517303 0.29658385
#> 35 0.13110027 0.55944987 1.06521739 0.45629991 0.00000000 0.00000000 0.13110027
#> 36 0.46827862 0.16637090 0.29658385 0.06322094 0.52417924 0.13110027 0.19432121
#> 37 0.19432121 0.00000000 0.72803904 0.29281278 0.00000000 0.06322094 0.19432121
#> 38 0.13110027 0.13110027 0.23336291 0.13110027 0.05590062 0.00000000 0.13110027
#> 29 30 31 32 33 34 35
#> 1 0.00000000 0.16637090 0.33096717 0.00000000 0.22959184 0.1663709 0.00000000
#> 2 0.57054126 0.00000000 0.10226264 0.00000000 0.39307897 0.8613576 0.33717835
#> 3 0.00000000 0.00000000 0.05590062 0.00000000 0.00000000 0.0000000 0.00000000
#> 4 0.13110027 0.00000000 0.05590062 0.00000000 0.40039929 0.4682786 0.00000000
#> 5 0.13110027 0.00000000 0.05590062 0.00000000 0.33717835 0.4682786 0.00000000
#> 6 0.00000000 0.05590062 0.71450754 0.00000000 0.00000000 0.0000000 0.00000000
#> 7 0.18078971 0.00000000 0.62644188 0.00000000 0.00000000 0.2440106 0.00000000
#> 8 0.13110027 0.00000000 0.05590062 0.00000000 0.33717835 0.4682786 0.13110027
#> 9 0.00000000 0.00000000 0.77040816 0.00000000 0.00000000 0.0000000 0.00000000
#> 10 0.00000000 0.00000000 0.71450754 0.00000000 0.00000000 0.0000000 0.00000000
#> 11 0.13110027 0.00000000 0.09427684 0.00000000 0.00000000 0.1311003 0.13110027
#> 12 0.00000000 0.71450754 0.00000000 0.71450754 0.66481810 0.1022626 0.00000000
#> 13 0.13110027 0.00000000 0.22959184 0.00000000 0.00000000 0.1311003 0.89440994
#> 14 0.18700089 0.00000000 0.00000000 0.05590062 0.33717835 0.4682786 0.00000000
#> 15 0.00000000 0.46827862 0.56255546 0.46827862 0.46827862 0.0000000 0.00000000
#> 16 0.57054126 0.00000000 0.10226264 0.00000000 0.05590062 0.5241792 0.33717835
#> 17 0.00000000 0.00000000 0.13110027 0.00000000 0.06322094 0.0000000 0.15816327
#> 18 0.13110027 0.14396628 0.00000000 0.14396628 0.15017746 0.1870009 0.13110027
#> 19 0.00000000 0.71450754 0.00000000 0.71450754 0.66481810 0.1654836 0.05590062
#> 20 0.26220053 0.52417924 0.09427684 0.46827862 0.53149956 0.2622005 0.13110027
#> 21 0.62023070 0.00000000 0.10226264 0.00000000 0.00000000 0.5811890 0.39307897
#> 22 0.13110027 0.33096717 0.00000000 0.27506655 0.22537711 0.1943212 0.13110027
#> 23 0.62023070 0.00000000 0.26863354 0.00000000 0.00000000 0.5179681 0.55944987
#> 24 0.51796806 0.18700089 0.06322094 0.13110027 0.13110027 0.5179681 1.06521739
#> 25 0.51796806 0.43944099 0.06322094 0.43944099 0.43944099 0.6834516 0.45629991
#> 26 0.05590062 0.13110027 0.71450754 0.18700089 0.13110027 0.0000000 0.00000000
#> 27 0.04968944 0.62644188 0.33717835 0.57054126 0.57054126 0.2151730 0.00000000
#> 28 0.13110027 0.66481810 0.05590062 0.66481810 0.72803904 0.2965839 0.13110027
#> 29 0.80723159 0.00000000 0.10226264 0.05590062 0.00000000 0.6490683 0.46827862
#> 30 0.00000000 0.93677906 0.00000000 0.71450754 0.83118900 0.2686335 0.00000000
#> 31 0.10226264 0.00000000 1.10226264 0.00000000 0.00000000 0.0000000 0.22959184
#> 32 0.05590062 0.71450754 0.00000000 0.77040816 0.66481810 0.1022626 0.00000000
#> 33 0.00000000 0.83118900 0.00000000 0.66481810 1.28748891 0.6617125 0.00000000
#> 34 0.64906832 0.26863354 0.00000000 0.10226264 0.66171251 1.3740018 0.46827862
#> 35 0.46827862 0.00000000 0.22959184 0.00000000 0.00000000 0.4682786 1.28748891
#> 36 0.05590062 0.13110027 0.22959184 0.18700089 0.19432121 0.0000000 0.33185448
#> 37 0.13110027 0.00000000 0.06322094 0.00000000 0.05590062 0.2502218 0.72803904
#> 38 0.31810115 0.00000000 0.00000000 0.05590062 0.33717835 0.5993789 0.13110027
#> 36 37 38
#> 1 0.40039929 0.00000000 0.00000000
#> 2 0.33717835 0.05590062 0.53149956
#> 3 0.33717835 0.00000000 0.00000000
#> 4 0.40039929 0.00000000 0.53149956
#> 5 0.00000000 0.00000000 0.63376220
#> 6 0.00000000 0.00000000 0.00000000
#> 7 0.00000000 0.06322094 0.13110027
#> 8 0.00000000 0.13110027 0.63376220
#> 9 0.33717835 0.00000000 0.00000000
#> 10 0.33717835 0.00000000 0.00000000
#> 11 0.33717835 0.13110027 0.23336291
#> 12 0.13110027 0.00000000 0.00000000
#> 13 0.33185448 0.72803904 0.13110027
#> 14 0.05590062 0.00000000 0.68966282
#> 15 0.13110027 0.16637090 0.10226264
#> 16 0.00000000 0.05590062 0.13110027
#> 17 0.50266193 0.10226264 0.10226264
#> 18 0.33717835 0.18700089 0.13110027
#> 19 0.13110027 0.06322094 0.00000000
#> 20 0.53149956 0.29747116 0.26220053
#> 21 0.00000000 0.06322094 0.13110027
#> 22 0.46827862 0.19432121 0.13110027
#> 23 0.16637090 0.00000000 0.13110027
#> 24 0.29658385 0.72803904 0.23336291
#> 25 0.06322094 0.29281278 0.13110027
#> 26 0.52417924 0.00000000 0.05590062
#> 27 0.13110027 0.06322094 0.00000000
#> 28 0.19432121 0.19432121 0.13110027
#> 29 0.05590062 0.13110027 0.31810115
#> 30 0.13110027 0.00000000 0.00000000
#> 31 0.22959184 0.06322094 0.00000000
#> 32 0.18700089 0.00000000 0.05590062
#> 33 0.19432121 0.05590062 0.33717835
#> 34 0.00000000 0.25022183 0.59937888
#> 35 0.33185448 0.72803904 0.13110027
#> 36 0.91925466 0.16548358 0.05590062
#> 37 0.16548358 1.01353150 0.13110027
#> 38 0.05590062 0.13110027 0.82076309
coefa_summary()
provides a preliminary preparation and
suggestion for the later co-occurrence matrix factor analysis.Scree plot
and Kaiser’s criterion will be ploted by this function.
coefa_summary(matrices.acm,fa="fa")
coefa_fa(matrices.acm,nfactors = 6,methodcoefa = "EFA",rotate = "varimax",fm="uls")
#> Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
#> The estimated weights for the factor scores are probably incorrect. Try a
#> different factor score estimation method.
#> Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
#> The estimated weights for the factor scores are probably incorrect. Try a
#> different factor score estimation method.
#> Factor Analysis using method = uls
#> Call: fa(r = R, nfactors = nfactors, rotate = rotate, fm = fm)
#> Standardized loadings (pattern matrix) based upon correlation matrix
#> ULS2 ULS1 ULS3 ULS4 ULS5 ULS6 h2 u2 com
#> 1 0.01 0.71 0.29 -0.01 0.03 -0.08 0.60 0.404 1.4
#> 2 -0.05 0.41 0.05 0.62 0.49 -0.07 0.79 0.205 2.8
#> 3 -0.05 0.88 0.04 0.01 0.01 -0.11 0.80 0.201 1.0
#> 4 -0.01 0.60 0.03 0.13 0.64 -0.14 0.80 0.200 2.2
#> 5 0.01 0.02 0.05 0.13 0.94 -0.06 0.91 0.093 1.1
#> 6 0.02 0.01 0.87 -0.05 -0.01 0.01 0.77 0.235 1.0
#> 7 0.06 -0.03 0.71 0.22 0.11 -0.02 0.57 0.426 1.3
#> 8 0.04 0.10 0.00 -0.04 0.87 0.16 0.79 0.210 1.1
#> 9 -0.04 0.47 0.81 -0.04 0.01 -0.05 0.89 0.115 1.6
#> 10 -0.04 0.48 0.77 0.06 -0.04 -0.08 0.84 0.161 1.7
#> 11 -0.01 0.68 0.14 0.00 0.18 0.14 0.53 0.468 1.3
#> 12 0.90 0.06 -0.01 -0.01 -0.04 -0.01 0.81 0.188 1.0
#> 13 -0.02 0.09 0.02 -0.02 0.03 0.91 0.83 0.166 1.0
#> 14 0.02 0.01 0.03 0.14 0.92 -0.05 0.87 0.127 1.1
#> 15 0.51 0.04 0.59 -0.05 0.06 0.07 0.62 0.379 2.0
#> 16 -0.04 0.03 0.05 0.86 0.08 0.00 0.74 0.258 1.0
#> 17 -0.03 0.64 0.22 0.00 0.08 0.10 0.47 0.531 1.3
#> 18 0.12 0.81 -0.07 0.03 0.04 0.09 0.69 0.312 1.1
#> 19 0.90 0.06 -0.01 0.06 -0.05 0.01 0.82 0.183 1.0
#> 20 0.46 0.59 0.12 0.12 0.10 0.09 0.61 0.394 2.2
#> 21 0.03 -0.01 0.10 0.91 0.01 0.02 0.85 0.153 1.0
#> 22 0.31 0.75 -0.02 0.02 0.01 0.13 0.68 0.322 1.4
#> 23 -0.02 -0.01 0.06 0.82 0.03 0.18 0.71 0.289 1.1
#> 24 0.13 0.10 0.02 0.32 0.08 0.74 0.69 0.310 1.5
#> 25 0.48 -0.05 0.08 0.60 0.03 0.14 0.62 0.381 2.1
#> 26 0.09 0.47 0.71 0.05 -0.03 -0.05 0.75 0.251 1.8
#> 27 0.69 -0.05 0.45 0.09 -0.03 0.02 0.68 0.316 1.8
#> 28 0.82 0.14 0.00 0.02 0.06 0.14 0.71 0.288 1.1
#> 29 0.02 0.05 0.00 0.79 0.15 0.23 0.69 0.306 1.3
#> 30 0.87 0.08 0.00 0.01 -0.02 -0.01 0.76 0.240 1.0
#> 31 -0.02 0.04 0.79 0.07 -0.01 0.14 0.65 0.353 1.1
#> 32 0.91 0.07 0.00 0.01 -0.01 -0.01 0.82 0.175 1.0
#> 33 0.72 0.08 -0.02 0.03 0.37 -0.03 0.66 0.342 1.5
#> 34 0.19 0.05 -0.03 0.56 0.47 0.16 0.60 0.400 2.4
#> 35 -0.02 0.08 0.00 0.39 -0.01 0.86 0.90 0.097 1.4
#> 36 0.12 0.60 0.10 0.02 -0.01 0.25 0.45 0.551 1.5
#> 37 0.06 0.10 0.01 0.02 0.05 0.75 0.58 0.421 1.1
#> 38 0.05 0.07 0.00 0.14 0.85 0.14 0.77 0.229 1.1
#>
#> ULS2 ULS1 ULS3 ULS4 ULS5 ULS6
#> SS loadings 5.76 5.39 4.41 4.33 4.33 3.09
#> Proportion Var 0.15 0.14 0.12 0.11 0.11 0.08
#> Cumulative Var 0.15 0.29 0.41 0.52 0.64 0.72
#> Proportion Explained 0.21 0.20 0.16 0.16 0.16 0.11
#> Cumulative Proportion 0.21 0.41 0.57 0.73 0.89 1.00
#>
#> Mean item complexity = 1.4
#> Test of the hypothesis that 6 factors are sufficient.
#>
#> The degrees of freedom for the null model are 703 and the objective function was 62.91
#> The degrees of freedom for the model are 490 and the objective function was 28.99
#>
#> The root mean square of the residuals (RMSR) is 0.05
#> The df corrected root mean square of the residuals is 0.05
#>
#> Fit based upon off diagonal values = 0.98
The path diagram and cluster plot of the factor analysis are output.
It should be noted that we should be alert to the positive definiteness of the aggregated matrix. If the matrix is non-positive definite, we should choose the factor extraction method carefully or we should take other solutions (remove questions appropriately, or smooth the matrix).
Note:It should be noted that co-occurrence matrices are formed in
such a way that the diagonal of the matrix does not equal 1, which often
makes KMO and Bartlett tests difficult to done. We offer an alternative
– coefa_fixdia()
, which fix(replace) the diagonal.
<-coefa_fixdia(matrices.acm,sz=100) fixedsmatrix
Cao,Y., & Zhang, Y. (2017). Multivariate statistic methods in psychology and education. Beijing: Peking university press.158.
Loeber,R., & Schmaling, K. B. (1985). Empirical evidence for overt and covert patterns of antisocial conduct problems: a metaanalysis. Journal of abnormal child psychology, 13(2), 337–353.
Revelle, W. (2022) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston,Illinois, USA, https://CRAN.R-project.org/package=psych Version = 2.2.5.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.
Schauberger, P. & Walker, A. (2021). openxlsx: Read, Write and Edit xlsx Files. R package version 4.2.5. https://CRAN.R-project.org/package=openxlsx
Shafer,A. B.(2005). Meta-analysis of the Brief Psychiatric Rating Scale factor structure. Psychological Assessment, 17(3),324–335.
Shafer,A. B. (2006). Meta-analysis of the factor structures of four depression questionnaires: Beck, CES-D, Hamilton, and Zung. Journal of clinical psychology, 62(1), 123–146.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.